24
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Protective Effect of the Total Alkaloid Extract from Bulbus Fritillariae pallidiflorae in a Mouse Model of Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease

, , , & ORCID Icon
Pages 1273-1289 | Received 11 Jan 2024, Accepted 20 May 2024, Published online: 10 Jun 2024

References

  • Cao X, Wang Y, Chen Y, et al. Advances in traditional Chinese medicine for the treatment of chronic obstructive pulmonary disease. J Ethnopharmacol. 2023;307:116229. doi:10.1016/j.jep.2023.116229
  • Kathrin K, Rudolf AJ, Jürgen B, et al. The diagnosis and treatment of COPD and its comorbidities. Dtsch Arztebl Int. 2023;120:434–444. doi:10.3238/arztebl.m2023.027
  • Li LY, Zhang CT, Zhu FY, et al. Potential natural small molecular compounds for the treatment of chronic obstructive pulmonary disease: an overview. Front Pharmacol. 2022;13:821941. doi:10.3389/fphar.2022.821941
  • Christenson SA, Smith BM, Bafadhel M, et al. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227–2242. doi:10.1016/s0140-6736(22)00470-6
  • Holtjer JCS, Bloemsma LD, Beijers RJHCG, et al. Identifying risk factors for COPD and adult-onset asthma: an umbrella review. Eur Respir Rev. 2023;32(168):230009. doi:10.1183/16000617.0009-2023
  • Barnes Peter J. Cellular and molecular mechanisms of asthma and COPD. Clin Sci. 2017;131(13):1541–1558. doi:10.1042/cs20160487
  • Lange P, Ahmed E, Lahmar ZM, et al. Natural history and mechanisms of COPD. Respirology. 2021;26(4):298–321. doi:10.1111/resp.14007
  • Wang C, Zhou J, Wang J, et al. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduction Tar. 2020;5(1):248. doi:10.1038/s41392-020-00345-x
  • Mintz M, Barjaktarevic I, Mahler DA, et al. Reducing the risk of mortality in chronic obstructive pulmonary disease with pharmacotherapy: a narrative review. Mayo Clin Proc. 2023;98(2):301–315. doi:10.1016/j.mayocp.2022.09.007
  • Singh D. Pharmacological treatment of stable chronic obstructive pulmonary disease. Respirology. 2021;26(7):643–651. doi:10.1111/resp.14046
  • MacLeod M, Papi A, Contoli M, et al. Chronic obstructive pulmonary disease exacerbation fundamentals: diagnosis, treatment, prevention and disease impact. Respirology. 2021;26(6):532–551. doi:10.1111/resp.14041
  • Ferrera MC, Labaki WW, Han MK. Advances in chronic obstructive pulmonary disease. Ann Rev Med. 2021;72(1):119–134. doi:10.1146/annurev-med-080919-112707
  • Liapikou A, Antoni TMFT, Torres A. Managing the safety of inhaled corticosteroids in COPD and the risk of pneumonia. Expert Opin Drug Saf. 2015;14(8):1237–1247. doi:10.1517/14740338.2015.1057494
  • Larry ETMD. Anticholinergic effects of medication in elderly patients. J Clin Psychiatr. 2001;62(Suppl 21):11–14.
  • Billington CK, Penn RB, Hall IP. β2 agonists. Handb Exp Pharmacol. 2017;237(237):23–40. doi:10.1007/164.2016.64
  • Milara J, Peiró T, Serrano A, et al. Epithelial to mesenchymal transition is increased in patients with COPD and induced by cigarette smoke. Thorax. 2013;68(5):410–420. doi:10.1136/thoraxjnl-2012-201761
  • Shaykhiev R, Crystal RG. Early events in the pathogenesis of chronic obstructive pulmonary disease. Smoking-induced reprogramming of airway epithelial basal progenitor cells. Ann Am Thorac Soc. 2014;11(Suppl 5):S252–S258. doi:10.1513/AnnalsATS.201402-049AW
  • Wang Q, Wang Y, Zhang Y, et al. Involvement of urokinase in cigarette smoke extract-induced epithelial-mesenchymal transition in human small airway epithelial cells. Lab Invest. 2015;95(5):469–479. doi:10.1038/labinvest.2015.33
  • Guan R, Wang J, Cai Z, et al. Hydrogen sulfide attenuates cigarette smoke-induced airway remodeling by upregulating SIRT1 signaling pathway. Redox Biol. 2020;28:101356. doi:10.1016/j.redox.2019.101356
  • Hogg JC, Paré PD, Hackett TL. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol Rev. 2017;97(2):529–552. doi:10.1152/physrev.00025.2015
  • Chen Y, Guo S, Guan Y, et al. The research progress of medicinal plants fritillaria. Mol Plant Breed. 2019;17(18):6198–6206. doi:10.13271/j.mpb.017.006198
  • Jin X, Li C, Zhang H. Research progress on chemical constituents and pharmacological activities of alkaloids in Fritillaria. J Chinese Med Mater. 2022;45(09):2273. doi:10.13863/j.issn1001-4454.2022.09.044
  • An Y, Wei W, Li H, et al. An enhanced strategy integrating offline superimposed two-dimensional separation with mass defect filter and diagnostic ion filter: comprehensive characterization of steroid alkaloids in Fritillariae Pallidiflorae Bulbus as a case study. J Chromatogr A. 2021;1643:462029. doi:10.1016/j.chroma.2021.462029
  • Li X, Luo Y, Geng Z, et al. Determination of 21 inorganic elements in Fritillariae Pallidiflorae Bulbus by ICP-MS. West China J Pharm Sci. 2021;36(4):447–452. doi:10.13375/j.cnki.wcjps.2021.04.017
  • Jiao H, Chen X, Hu J, et al. Review on chemical composition and biological activities of Fritillaria Pallidiflora. Guangdong Chem Ind. 2023;50(4):92–3+86.
  • Liu S, Yang T, Ming TW, et al. Isosteroid alkaloids with different chemical structures from Fritillariae cirrhosae bulbus alleviate LPS-induced inflammatory response in RAW 264.7 cells by MAPK signaling pathway. Int Immunopharmacol. 2020;78:106047. doi:10.1016/j.intimp.2019.106047
  • Liu S, Yang T, Ming TW, et al. Isosteroid alkaloids from Fritillaria cirrhosa bulbus as inhibitors of cigarette smoke-induced oxidative stress. Fitoterapia. 2020;140:104434. doi:10.1016/j.fitote.2019.104434
  • Wang D, Du Q, Li H, et al. The isosteroid alkaloid imperialine from bulbs of Fritillaria cirrhosa mitigates pulmonary functional and structural impairment and suppresses inflammatory response in a COPD-like rat model. Mediators Inflammation. 2016;2016:1–17. doi:10.1155/2016/4192483
  • Pai M, Erbu A, Wu Y, et al. Total alkaloids of bulbus of Fritillaria cirrhosa alleviate bleomycin-induced inflammation and pulmonary fibrosis in rats by inhibiting TGF-β and NF-κB signaling pathway. Food Nutr Res. 2023;67:10292. doi:10.29219/fnr.v67.10292
  • Liu C, Liu S, Tse WT, et al. A distinction between Fritillaria Cirrhosa Bulbus and Fritillaria Pallidiflora Bulbus via LC-MS/MS in conjunction with principal component analysis and hierarchical cluster analysis. Sci Rep. 2023;13(1):2735. doi:10.1038/s41598-023-29631-8
  • Murgia N, Gambelunghe A. Occupational COPD-the most under-recognized occupational lung disease? Respirology. 2022;27(6):399–410. doi:10.1111/resp.14272
  • Sokar SS, Afify EH, Osman EY. Dexamethasone and losartan combination treatment protected cigarette smoke-induced COPD in rats. Hum Exp Toxicol. 2020;40(2):284–296. doi:10.1177/0960327120950012
  • Yang T, Wang H, Li Y, et al. Serotonin receptors 5-HTR2A and 5-HTR2B are involved in cigarette smoke-induced airway inflammation, mucus hypersecretion and airway remodeling in mice. Int Immunopharmacol. 2020;81:106036. doi:10.1016/j.intimp.2019.106036
  • Zhang Q, Yan L, Lu J, et al. Glycyl-L-histidyl-L-lysine-Cu2+ attenuates cigarette smoke-induced pulmonary emphysema and inflammation by reducing oxidative stress pathway. Front Mol Biosci. 2022;9:925700. doi:10.3389/fmolb.2022.925700
  • Jain S, Durugkar S, Saha P, et al. Effects of intranasal azithromycin on features of cigarette smoke-induced lung inflammation. Eur J Pharmacol. 2022;915:174467. doi:10.1016/j.ejphar.2021.174467
  • Saber BGE, Gareeb AIA, Saad HM, et al. COVID-19 and corticosteroids: a narrative review. Inflammopharmacology. 2022;30(4):1189–1205. doi:10.1007/s10787-022-00987-z
  • Liu L, Zhang Y, Xu D, et al. Effect of Rehmanniae radix oligosaccharides on pathological changes in peripheral airways of COPD rats. J Chinese Med Mater. 2013;36(10):1678–1681. doi:10.13863/j.issn1001-4454.2013.10.041
  • Xu Y, Li J, Lin Z, et al. Isorhamnetin alleviates airway inflammation by regulating the Nrf2/Keap1 pathway in a mouse model of COPD. Front Pharmacol. 2022;13:860362. doi:10.3389/fphar.2022.860362
  • Li J, Xie Y, Zhao P, et al. A Chinese herbal formula ameliorates COPD by inhibiting the inflammatory response via downregulation of p65, JNK, and p38. Phytomedicine. 2021;83:153475. doi:10.1016/j.phymed.2021.153475
  • Deng M, Tong R, Bian Y, et al. Astaxanthin attenuates cigarette smoking-induced oxidative stress and inflammation in a sirtuin 1-dependent manner. Biomed Pharmacother. 2023;159:114230. doi:10.1016/j.biopha.2023.114230
  • Yi X, Li T, Wei X, et al. Erythromycin attenuates oxidative stress-induced cellular senescence via the PI3K-mTOR signaling pathway in chronic obstructive pulmonary disease. Front Pharmacol. 2022;13:1043474. doi:10.3389/fphar.2022.1043474
  • Liang S, Zheng Y, Lei L, et al. Corydalis edulis total alkaloids (CETA) ameliorates cognitive dysfunction in rat model of Alzheimer disease through regulation of the antioxidant stress and MAP2/NF-κB. J Ethnopharmacol. 2020;251:112540. doi:10.1016/j.jep.2019.112540
  • Lai T, Li Y, Chen M, et al. Heparin-binding epidermal growth factor contributes to COPD disease severity by modulating airway fibrosis and pulmonary epithelial–mesenchymal transition. Lab Invest. 2018;98(9):1159–1169. doi:10.1038/s41374-018-0049-0
  • Wang Q, Sundar IK, Lucas JH, et al. Molecular clock REV-ERBα regulates cigarette smoke–induced pulmonary inflammation and epithelial-mesenchymal transition. JCI Insight. 2021;6(12):145200. doi:10.1172/jci.insight.145200
  • Jiang B, Guan Y, Shen H, et al. Akt/PKB signaling regulates cigarette smoke-induced pulmonary epithelial-mesenchymal transition. Lung Cancer. 2018;122:44–53. doi:10.1016/j.lungcan.2018.05.019
  • Mahmood MQ, Reid D, Ward C, et al. Transforming growth factor (TGF) β1 and Smad signalling pathways: a likely key to EMT‐associated COPD pathogenesis. Respirology. 2016;22(1):133–140. doi:10.1111/resp.12882
  • Ostridge K, Williams N, Kim V, et al. Distinct emphysema subtypes defined by quantitative CT analysis are associated with specific pulmonary matrix metalloproteinases. Respir Res. 2016;17(1):92–100. doi:10.1186/s12931-016-0402-z
  • Li C, Huang Z, Li W, et al. The nucleotide-binding oligomerization domain–like receptor family pyrin domain-containing 3 inflammasome regulates bronchial epithelial cell injury and proapoptosis after exposure to biomass fuel smoke. Am J Resp Cell Mol. 2016;55(6):815–824. doi:10.1165/rcmb.2016-0051OC
  • Tao Y, Sun Y, Wu B, et al. Overexpression of FOXA2 attenuates cigarette smoke-induced cellular senescence and lung inflammation through inhibition of the p38 and Erk1/2 MAPK pathways. Int Immunopharmacol. 2021;94:107427. doi:10.1016/j.intimp.2021.107427
  • Pelaia C, Vatrella A, Gallelli L, et al. Role of p38 mitogen-activated protein kinase in asthma and COPD: pathogenic aspects and potential targeted therapies. Drug Des Dev Ther. 2021;15:1275–1284. doi:10.2147/dddt.S300988
  • Guan R, Wang J, Li Z, et al. Sodium tanshinone IIA sulfonate decreases cigarette smoke-induced inflammation and oxidative stress via blocking the activation of MAPK/HIF-1α signaling pathway. Front Pharmacol. 2018;9:1–13. doi:10.3389/fphar.2018.00263
  • Guan R, Wang J, Li D, et al. Hydrogen sulfide inhibits cigarette smoke-induced inflammation and injury in alveolar epithelial cells by suppressing PHD2/HIF-1α/MAPK signaling pathway. Int Immunopharmacol. 2020;81:105979. doi:10.1016/j.intimp.2019.105979
  • Bin YF, Ma N, Lu YX, et al. Erythromycin reverses cigarette smoke extract-induced corticosteroid insensitivity by inhibition of the JNK/c-Jun pathway. Free Radic Biol Med. 2020;152:494–503. doi:10.1016/j.freeradbiomed.2019.11.020