30
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Association Between Urinary Phthalate Metabolites and Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study

, , & ORCID Icon
Pages 1421-1431 | Received 13 Jan 2024, Accepted 18 Jun 2024, Published online: 24 Jun 2024

References

  • Holtjer JCS, Bloemsma LD, Beijers RJHCG, et al. P4O2 consortium. Identifying risk factors for COPD and adult-onset asthma: an umbrella review. Eur Respir Rev. 2023;32(168):230009. doi:10.1183/16000617.0009-2023
  • Upadhyay P, Wu CW, Pham A, et al. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). J Toxicol Environ Health B Crit Rev. 2023;26(5):275–305. doi:10.1080/10937404.2023.2208886
  • Islam F, Muni M, Mitra S, et al. Recent advances in respiratory diseases: dietary carotenoids as choice of therapeutics. Biomed Pharmacother. 2022;155:113786. doi:10.1016/j.biopha.2022.113786
  • O’Shaughnessy M, Sheils O, Baird AM. The lung microbiome in COPD and lung cancer: exploring the potential of metal-based drugs. Int J Mol Sci. 2023;24(15):12296. doi:10.3390/ijms241512296
  • Liu C, Li P, Zheng J, Wang Y, Wu W, Liu X. Role of necroptosis in airflow limitation in chronic obstructive pulmonary disease: focus on small-airway disease and emphysema. Cell Death Discov. 2022;8(1):363. doi:10.1038/s41420-022-01154-7
  • Santus P, Radovanovic D, Pecchiari M, et al. The relevance of targeting treatment to small airways in asthma and COPD. Respir Care. 2020;65(9):1392–1412. doi:10.4187/respcare.07237
  • Won HK, Song WJ, Moon SD, et al. Staphylococcal enterotoxin-specific ige sensitization: a potential predictor of fixed airflow obstruction in elderly asthma. Allergy Asthma Immunol Res. 2023;15(2):160–173. doi:10.4168/aair.2023.15.2.160
  • Zhai H, Wang Y, Jiang W. Fruit and vegetable intake and the risk of chronic obstructive pulmonary disease: a dose-response meta-analysis of observational studies. Biomed Res Int. 2020;2020:3783481. doi:10.1155/2020/3783481
  • Bateman G, Guo-Parke H, Rodgers AM, et al. Airway epithelium senescence as a driving mechanism in COPD pathogenesis. Biomedicines. 2023;11(7):2072. doi:10.3390/biomedicines11072072
  • Beijers RJHCG, Steiner MC, Schols AMWJ. The role of diet and nutrition in the management of COPD. Eur Respir Rev. 2023;32(168):230003. doi:10.1183/16000617.0003-2023
  • Xiang S, Dong J, Li X, Li C. Urine phthalate levels and liver function in US adolescents: analyses of NHANES 2007–2016. Front Public Health. 2022;10:843971. doi:10.3389/fpubh.2022.843971
  • Cai S, Fan J, Ye J, Rao X, Li Y. Phthalates exposure is associated with non-alcoholic fatty liver disease among US adults. Ecotoxicol Environ Saf. 2021;224:112665. doi:10.1016/j.ecoenv.2021.112665
  • Yu L, Yang M, Cheng M, et al. Associations between urinary phthalate metabolite concentrations and markers of liver injury in the US adult population. Environ Int. 2021;155:106608. doi:10.1016/j.envint.2021.106608
  • Vogel N, Schmidt P, Lange R, et al. Current exposure to phthalates and DINCH in European children and adolescents - Results from the HBM4EU Aligned Studies 2014 to 2021. Int J Hyg Environ Health. 2023;249:114101. doi:10.1016/j.ijheh.2022.114101
  • Quirós-Alcalá L, Belz DC, Woo H, et al. A cross sectional pilot study to assess the role of phthalates on respiratory morbidity among patients with chronic obstructive pulmonary disease. Environ Res. 2023;225:115622. doi:10.1016/j.envres.2023.115622
  • Chen X, Tian F, Wu J, et al. Associations of phthalates with NAFLD and liver fibrosis: a nationally representative cross-sectional study from NHANES 2017 to 2018. Front Nutr. 2022;9:1059675. doi:10.3389/fnut.2022.1059675
  • Whyatt RM, Perzanowski MS, Just AC, et al. Asthma in inner-city children at 5–11 years of age and prenatal exposure to phthalates: the Columbia Center for Children’s Environmental Health Cohort. Environ Health Perspect. 2014;122(10):1141–1146. doi:10.1289/ehp.1307670
  • Maestre-Batlle D, Huff RD, Schwartz C, et al. Dibutyl phthalate augments allergen-induced lung function decline and alters human airway immunology. a randomized crossover study. Am J Respir Crit Care Med. 2020;202(5):672–680. doi:10.1164/rccm.201911-2153OC
  • Zhou S, Han M, Ren Y, et al. Dibutyl phthalate aggravated asthma-like symptoms through oxidative stress and increasing calcitonin gene-related peptide release. Ecotoxicol Environ Saf. 2020;199:110740. doi:10.1016/j.ecoenv.2020.110740
  • Franken C, Lambrechts N, Govarts E, et al. Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents. Int J Hyg Environ Health. 2017;220(2 Pt B):468–477. doi:10.1016/j.ijheh.2017.01.006
  • Mordukhovich I, Lepeule J, Coull BA, Sparrow D, Vokonas P, Schwartz J. The effect of oxidative stress polymorphisms on the association between long-term black carbon exposure and lung function among elderly men. Thorax. 2015;70(2):133–137. doi:10.1136/thoraxjnl-2014-206179
  • Park HY, Kim JH, Lim YH, Bae S, Hong YC. Influence of genetic polymorphisms on the association between phthalate exposure and pulmonary function in the elderly. Environ Res. 2013;122:18–24. doi:10.1016/j.envres.2012.11.004
  • Berger K, Coker E, Rauch S, et al. Prenatal phthalate, paraben, and phenol exposure and childhood allergic and respiratory outcomes: evaluating exposure to chemical mixtures. Sci Total Environ. 2020;725:138418. doi:10.1016/j.scitotenv.2020.138418
  • Gascon M, Casas M, Morales E, et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J Allergy Clin Immunol. 2015;135(2):370–378. doi:10.1016/j.jaci.2014.09.030
  • Baek HS, Won HY, Kim JH, et al. Association of phthalate exposure and airway dysfunction with mediation by serum periostin. Pediatr Allergy Immunol. 2021;32(8):1681–1690. doi:10.1111/pai.13602
  • Wang X, Lv Z, Han B, et al. The aggravation of allergic airway inflammation with dibutyl phthalate involved in Nrf2-mediated activation of the mast cells. Sci Total Environ. 2021;789:148029. doi:10.1016/j.scitotenv.2021.148029
  • Yu Y, Wang JQ. Phthalate exposure and lung disease: the epidemiological evidences, plausible mechanism and advocacy of interventions. Rev Environ Health. 2022;39(1):37–45. doi:10.1515/reveh-2022-0077
  • Atia T, Abdel-Gawad S. Pulmonary toxicity induced by exposure to phthalates, an experimental study. Inhal Toxicol. 2019;31(9–10):376–383. doi:10.1080/08958378.2019.1695025
  • Rosicarelli B, Stefanini S. DEHP effects on histology and cell proliferation in lung of newborn rats. Histochem Cell Biol. 2009;131(4):491–500. doi:10.1007/s00418-008-0550-4
  • Luczka-Majérus E, Bonnomet A, Germain A, et al. Ciliogenesis is intrinsically altered in COPD small airways. Eur Respir J. 2022;60(6):2200791. doi:10.1183/13993003.00791-2022
  • Tramontano A, Palange P. Nutritional state and COPD: effects on dyspnoea and exercise tolerance. Nutrients. 2023;15(7):1786. doi:10.3390/nu15071786
  • Booth S, Hsieh A, Mostaco-Guidolin L, et al. A single-cell atlas of small airway disease in chronic obstructive pulmonary disease: a cross-sectional study. Am J Respir Crit Care Med. 2023;208(4):472–486. doi:10.1164/rccm.202303-0534OC
  • Coton S, Vollmer WM, Bateman E, et al. Burden of obstructive lung disease study investigators. severity of airflow obstruction in Chronic Obstructive Pulmonary Disease (COPD): proposal for a new classification. COPD. 2017;14(5):469–475. doi:10.1080/15412555.2017.1339681
  • Milne S, Mannino D, Sin DD. Asthma-COPD overlap and chronic airflow obstruction: definitions, management, and unanswered questions. J Allergy Clin Immunol Pract. 2020;8(2):483–495. doi:10.1016/j.jaip.2019.10.044
  • National Toxicology Program. NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Butyl Benzyl Phthalate (BBP). National Toxicology Program, US Department of Health and Human Service; 2003.
  • Just AC, Whyatt RM, Miller RL, et al. Children’s urinary phthalate metabolites and fractional exhaled nitric oxide in an urban cohort. Am J Respir Crit Care Med. 2012;186(9):830–837. doi:10.1164/rccm.201203-0398OC
  • Ferguson KK, Loch-Caruso R, Meeker JD. Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999–2006. Environ Res. 2011;111(5):718–726. doi:10.1016/j.envres.2011.02.002
  • Ferguson KK, Loch-Caruso R, Meeker JD. Exploration of oxidative stress and inflammatory markers in relation to urinary phthalate metabolites: NHANES 1999–2006. Environ Sci Technol. 2012;46(1):477–485. doi:10.1021/es202340b
  • Wang CW, Chen SC, Wu DW, et al. Effect of dermal phthalate levels on lung function tests in residential area near a petrochemical complex. Environ Sci Pollut Res Int. 2021;28(21):27333–27344. doi:10.1007/s11356-020-12322-6
  • Kim KN, Lee MR, Choi YH, Lee BE, Hong YC. Association between phthalate exposure and lower lung function in an urban elderly population: a repeated-measures longitudinal study. Environ Int. 2018;113:177–183. doi:10.1016/j.envint.2018.02.004
  • Lin LY, Tsai MS, Chen MH, et al. Childhood exposure to phthalates and pulmonary function. Sci Total Environ. 2018;615:1282–1289. doi:10.1016/j.scitotenv.2017.08.318
  • Zeng G, Zhang Q, Wang X, Wu KH. Urinary levels of Phthalate metabolite mixtures and pulmonary function in adolescents. Environ Pollut. 2022;293:118595. doi:10.1016/j.envpol.2021.118595
  • Yentes JM, Sayles H, Meza J, Mannino DM, Rennard SI, Stergiou N. Walking abnormalities are associated with COPD: an investigation of the NHANES III dataset. Respir Med. 2011;105(1):80–87. doi:10.1016/j.rmed.2010.06.007
  • Liu H, Tan X, Liu Z, et al. Association Between Diet-Related Inflammation and COPD: findings From NHANES III. Front Nutr. 2021;8:732099. doi:10.3389/fnut.2021.732099
  • Fei Q, Weng X, Liu K, et al. The relationship between metal exposure and chronic obstructive pulmonary disease in the general US population: NHANES 2015–2016. Int J Environ Res Public Health. 2022;19(4):2085. doi:10.3390/ijerph19042085