146
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Magnesium Sulfate Improves Some Risk Factors for Atherosclerosis in Patients Suffering from One or Two Coronary Artery Diseases: A Double-blind Clinical Trial Study

, , ORCID Icon, , , ORCID Icon & show all
Pages 159-169 | Published online: 25 Sep 2020

References

  • Torres N, Guevara-Cruz M, Velazquez-Villegas LA, Tovar AR. Nutrition and atherosclerosis. Arch Med Res. 2015;46(5):408–426. doi:10.1016/j.arcmed.2015.05.01026031780
  • Lim DH, Lee Y, Park GM, et al. Serum uric acid level and subclinical coronary atherosclerosis in asymptomatic individuals: an observational cohort study. Atherosclerosis. 2019;288:112–117. doi:10.1016/j.atherosclerosis.2019.07.01731352272
  • Orimo H, Ouchi Y. The role of calcium and magnesium in the development of atherosclerosis. Experimental and clinical evidence. Ann N Y Acad Sci. 1990;598:444–457. doi:10.1111/j.1749-6632.1990.tb42315.x2248457
  • Brinkley TE, Kume N, Mitsuoka H, et al. Variation in the human lectin‐like oxidized low‐density lipoprotein receptor 1 (LOX‐1) gene is associated with plasma soluble LOX‐1 levels. Exp Physiol. 2008;93(9):1085–1090. doi:10.1113/expphysiol.2008.04226718469066
  • Blum JW, Froehli D, Kunz P. Effects of catecholamines on plasma free fatty acids in fed and fasted cattle. Endocrinology. 1982;110(2):452–456. doi:10.1210/endo-110-2-4527056209
  • Kvetnansky R, Lu X, Ziegler MG. Stress-triggered changes in peripheral catecholaminergic systems. Adv Pharmacol. 2013;68:359–397. doi:10.1016/B978-0-12-411512-5.00017-824054153
  • Burn J, Gibbons W. The part played by calcium in determining the response to stimulation of sympathetic postganglionic fibres. Br J Pharmacol Chemother. 1964;22(3):540–548. doi:10.1111/j.1476-5381.1964.tb01708.x14211684
  • Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14(1):6. doi:10.1186/1475-2891-14-625577237
  • Fang P, Zhang D, Cheng Z, et al. Hyperhomocysteinemia potentiates hyperglycemia-induced inflammatory monocyte differentiation and atherosclerosis. Diabetes. 2014;63(12):4275–4290. doi:10.2337/db14-080925008174
  • Ernst E. The role of fibrinogen as a cardiovascular risk factor. Atherosclerosis. 1993;100(1):1–12. doi:10.1016/0021-9150(93)90062-y8318054
  • Ernst E. Fibrinogen as a cardiovascular risk factor–interrelationship with infections and inflammation. Eur Heart J. 1993;14:82–87.
  • Zhang Y, Zhu C-G, Guo Y-L, et al. Higher fibrinogen level is independently linked with the presence and severity of new-onset coronary atherosclerosis among Han Chinese population. PLoS One. 2014;9(11):e113460. doi:10.1371/journal.pone.011346025426943
  • Reffelmann T, Ittermann T, Dörr M, et al. Low serum magnesium concentrations predict cardiovascular and all-cause mortality. Atherosclerosis. 2011;219(1):280–284. doi:10.1016/j.atherosclerosis.2011.05.03821703623
  • Maier JA. Low magnesium and atherosclerosis: an evidence-based link. Mol Aspects Med. 2003;24(3–1):137–146. doi:10.1016/s0098-2997(02)00095-x12537993
  • Kupetsky-Rincon EA, Uitto J. Magnesium: novel applications in cardiovascular disease–a review of the literature. Ann Nutr Metab. 2012;61(2):102–110. doi:10.1159/00033938022907037
  • Kieboom BC, Niemeijer MN, Leening MJ, et al. Serum magnesium and the risk of death from coronary heart disease and sudden cardiac death. J Am Heart Assoc. 2016;5(1):e002707. doi:10.1161/JAHA.115.00270726802105
  • Cunha AR, D’El-Rei J, Medeiros F, et al. Oral magnesium supplementation improves endothelial function and attenuates subclinical atherosclerosis in thiazide-treated hypertensive women. J Hypertens. 2017;35(1):89–97. doi:10.1097/HJH.000000000000112927759579
  • Guo H, Lee J-D, Uzui H, et al. Effects of folic acid and magnesium on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells. Circ J. 2006;70(1):141–146. doi:10.1253/circj.70.14116377938
  • Fazlali M, Kharazmi F, Kamran M, et al. Effect of oral magnesium sulfate administration on lectin-like oxidized low-density lipoprotein receptor-1 gene expression to prevent atherosclerosis in diabetic rat vessels. J Diabetes Investig. 2019;10(3):650–658. doi:10.1111/jdi.12961
  • Soltani N, Keshavarz M, Dehpour AR. Effect of oral magnesium sulfate administration on blood pressure and lipid profile in streptozocin diabetic rat. Eur J Pharmacol. 2007;560(2–3):201–205. doi:10.1016/j.ejphar.2006.12.02017292879
  • Soltani N, Keshavarz M, Minaii B, Mirershadi F, Zahedi Asl S, Dehpour AR. Effects of administration of oral magnesium on plasma glucose and pathological changes in the aorta and pancreas of diabetic rats. Clin Exp Pharmacol Physiol. 2005;32(8):604–610. doi:10.1111/j.0305-1870.2005.04238.x16120185
  • Soltani N, Keshavarz M, Sohanaki H, Zahedi Asl S, Dehpour AR. Relaxatory effect of magnesium on mesenteric vascular beds differs from normal and streptozotocin induced diabetic rats. Eur J Pharmacol. 2005;508(1–3):177–181. doi:10.1016/j.ejphar.2004.12.00315680269
  • Shahbah D, Hassan T, Morsy S, et al. Oral magnesium supplementation improves glycemic control and lipid profile in children with type 1 diabetes and hypomagnesaemia. Medicine. 2017;96(11):11. doi:10.1097/MD.0000000000006352
  • Shahi A, Aslani S, Ataollahi M, Mahmoudi M. The role of magnesium in different inflammatory diseases. Inflammopharmacology. 2019;27(4):649–661. doi:10.1007/s10787-019-00603-731172335
  • Cao Y, Wang C, Guan K, Xu Y, Su Y-X, Chen Y-M. Association of magnesium in serum and urine with carotid intima-media thickness and serum lipids in middle-aged and elderly Chinese: a community-based cross-sectional study. Eur J Nutr. 2016;55(1):219–226. doi:10.1007/s00394-015-0839-825750058
  • Severino P, Netti L, Mariani MV, et al. Prevention of cardiovascular disease: screening for magnesium deficiency. Cardiol Res Pract. 2019;2019:1–10. doi:10.1155/2019/4874921
  • Dong J-Y, Xun P, He K, Qin L-Q. Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care. 2011;34(9):2116–2122. doi:10.2337/dc11-051821868780
  • Guerrero‐Romero F, Rodríguez‐Morán M. Magnesium improves the beta‐cell function to compensate variation of insulin sensitivity: double‐blind, randomized clinical trial. Eur J Clin Invest. 2011;41(4):405–410. doi:10.1111/j.1365-2362.2010.02422.x21241290
  • Fang X, Wang K, Han D, et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: a dose–response meta-analysis of prospective cohort studies. BMC Med. 2016;14(1):210. doi:10.1186/s12916-016-0742-z27927203
  • Fang X, Han H, Li M, et al. Dose-response relationship between dietary magnesium intake and risk of type 2 diabetes mellitus: a systematic review and meta-regression analysis of prospective cohort studies. Nutrients. 2016;8(11):739. doi:10.3390/nu8110739
  • Rosique-Esteban N, Guasch-Ferré M, Hernández-Alonso P, Salas-Salvadó J. Dietary magnesium and cardiovascular disease: a review with emphasis in epidemiological studies. Nutrients. 2018;10(2):168. doi:10.3390/nu10020168
  • Wang J, Jia L, Li X, et al. New insights into the association between fibrinogen and coronary atherosclerotic plaque vulnerability: an intravascular optical coherence tomography study. Cardiovasc Ther. 2019;2019:1–12. doi:10.1155/2019/8563717
  • Papageorgiou N, Briasoulis A, Hatzis G, et al. Coronary artery atherosclerosis in hypertensive patients: the role of fibrinogen genetic variability. Rev Esp Cardiol (Engl Ed). 2017;70(1):34–41. doi:10.1016/j.rec.2016.05.02427553289
  • Sreckovic B, Sreckovic VD, Soldatovic I, et al. Homocysteine is a marker for metabolic syndrome and atherosclerosis. Diabetes Metab Syndr. 2017;11(3):179–182. doi:10.1016/j.dsx.2016.08.02627600468
  • McCully KS. Homocysteine metabolism, atherosclerosis, and diseases of aging. Compr Physiol. 2011;6(4):471–505. doi:10.1002/cphy.c150021
  • Agrawal A. CRP after 2004. Mol Immunol. 2005;42(8):927–930. doi:10.1016/j.molimm.2004.09.02815829284
  • Arici M, Walls J. End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link? Kidney Int. 2001;59(2):407–414. doi:10.1046/j.1523-1755.2001.059002407.x11168922
  • Sun Y, Byon CH, Yang Y, et al. Dietary potassium regulates vascular calcification and arterial stiffness. JCI Insight. 2017;2(19). doi:10.1172/jci.insight.94920
  • Johnson LS, Mattsson N, Sajadieh A, Wollmer P, Söderholm M. Serum potassium is positively associated with stroke and mortality in the large, population-based malmö preventive project cohort. Stroke. 2017;48(11):2973–2978. doi:10.1161/STROKEAHA.117.01814828974633
  • Bano A, Chaker L, Mattace-Raso FU, et al. Thyroid function and the risk of atherosclerotic cardiovascular morbidity and mortality: the Rotterdam Study. Circ Res. 2017;121(12):1392–1400. doi:10.1161/CIRCRESAHA.117.31160329089349
  • Åsvold BO, Bjøro T, Nilsen TIL, Gunnell D, Vatten LJ. Thyrotropin levels and risk of fatal coronary heart disease: the HUNT study. Arch Intern Med. 2008;168(8):855–860. doi:10.1001/archinte.168.8.85518443261
  • Åsvold BO, Vatten LJ, Bjøro T, et al. Thyroid function within the normal range and risk of coronary heart disease: an individual participant data analysis of 14 cohorts. JAMA Intern Med. 2015;175(6):1037–1047. doi:10.1001/jamainternmed.2015.093025893284
  • Chaker L, Baumgartner C, Den Elzen WP, et al. Thyroid function within the reference range and the risk of stroke: an individual participant data analysis. J Clin Endocrinol Metab. 2016;101(11):4270–4282. doi:10.1210/jc.2016-225527603906
  • Rodondi N, Den Elzen WP, Bauer DC, et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA. 2010;304(12):1365–1374. doi:10.1001/jama.2010.136120858880
  • Cappola AR, Arnold AM, Wulczyn K, Carlson M, Robbins J, Psaty BM. Thyroid function in the euthyroid range and adverse outcomes in older adults. J Clin Endocrinol Metab. 2015;100(3):1088–1096. doi:10.1210/jc.2014-358625514105
  • Cappola AR, Fried LP, Arnold AM, et al. Thyroid status, cardiovascular risk, and mortality in older adults. JAMA. 2006;295(9):1033–1041. doi:10.1001/jama.295.9.103316507804
  • Collet T-H, Gussekloo J, Bauer DC, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172(10):799–809. doi:10.1001/archinternmed.2012.40222529182
  • Erikssen G, Liestøl K, Bjørnholt J, Stormorken H, Thaulow E, Erikssen J. Erythrocyte sedimentation rate: a possible marker of atherosclerosis and a strong predictor of coronary heart disease mortality. Eur Heart J. 2000;21(19):1614–1620. doi:10.1053/euhj.2000.214810988014
  • Ige A, Adewoye E. Oral magnesium treatment reduces anemia and levels of inflammatory markers in experimental diabetes. J Diet Suppl. 2017;14(1):76–88. doi:10.1080/19390211.2016.120570027459339
  • Johansson H-E, Haenni A, Zethelius B. Changes in erythrocyte sedimentation rate, white blood cell count, liver enzymes, and magnesium after gastric bypass surgery. J Obes. 2011;2011:1–6. doi:10.1155/2011/273105
  • Christoffersen C, Bartels ED, Aarup A, Nielsen LB, Pedersen TX. ApoB and apoM–new aspects of lipoprotein biology in uremia-induced atherosclerosis. Eur J Pharmacol. 2017;816:154–160. doi:10.1016/j.ejphar.2017.03.05328351665
  • Kushiyama A, Nakatsu Y, Matsunaga Y, et al. Role of uric acid metabolism-related inflammation in the pathogenesis of metabolic syndrome components such as atherosclerosis and nonalcoholic steatohepatitis. Mediators Inflamm. 2016;2016:1–15. doi:10.1155/2016/8603164