390
Views
5
CrossRef citations to date
0
Altmetric
Original Research

The Impact of First-Line Anti-Tubercular Drugs’ Pharmacokinetics on Treatment Outcome: A Systematic Review

, ORCID Icon, & ORCID Icon
Pages 1-12 | Published online: 12 Jan 2021

References

  • WHO. Global Tuberculosis Report; 2019.
  • WHO. End TB Strategy; 2015.
  • Verbeeck RK, Günther G, Kibuule D, et al. Optimizing treatment outcome of first-line anti-tuberculosis drugs: the role of therapeutic drug monitoring. Eur J Clin Pharmacol. 2016;72(8):905–916. doi:10.1007/s00228-016-2083-427305904
  • Reynolds J, Heysell SK. Understanding pharmacokinetics to improve tuberculosis treatment outcome. Expert Opin Drug Metab Toxicol. 2014;10(6):813–823. doi:10.1517/17425255.2014.89581324597717
  • Chideya S, Winston C, Peloquin C, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis. 2009;48(12):1685–1694. doi:10.1086/59904019432554
  • Chang J-T, Dou H-Y, Yen C-L, et al. Effect of Type 2 diabetes mellitus on the clinical severity and treatment outcome in patients with pulmonary tuberculosis: a potential role in the emergence of multidrug-resistance. Formosan Med Assoc. 2011;110(6):372–381. doi:10.1016/S0929-6646(11)60055-7
  • Dooley KE, Lahlou O, Ghali I, et al. Risk factors for tuberculosis treatment failure, default, or relapse and outcomes of retreatment in Morocco. BMC Public Health. 2011;11(1):140. doi:10.1186/1471-2458-11-14021356062
  • Musaazi J, Sekaggya-Wiltshire C, Kiragga AN, et al. Sustained positive impact on tuberculosis treatment outcomes of TB-HIV integrated care in Uganda. Int J Tuberc Lung Dis. 2019;23(4):514–521. doi:10.5588/ijtld.18.030631064632
  • Huang D, Wang Y, Wang Y, et al. The impact of diabetes mellitus on drug resistance in patients with newly diagnosed tuberculosis: a systematic review and meta-analysis. Ann Palliat Med. 2020;9(2):152–162. doi:10.21037/apm.2020.02.1632268768
  • Bhargava AB. M. Tuberculosis deaths are predictable and preventable: comprehensive assessment and clinical care is the key. J. Clin. Tuberc. Other Mycobact. Dis. 2020;19,(100155):(2020).
  • Ramesh Jayaram RKS, Gaonkar S, Parvinder Kaur BL, et al. Isoniazid Pharmacokinetics-Pharmacodynamics in an Aerosol Infection Model of Tuberculosis. Antimicrobial Agents Chemother. 2004;48(8):2951–2957.
  • Jotam G, Pasipanodya EN, Romero K, Hanna D, Gumbo T. Systematic Analysis of Hollow Fiber Model of Tuberculosis Experiments. Clin Infect Dis. 2015;61.
  • WHO. Technical Report on the Pharmacokinetics and Pharmacodynamics (PK/PD) of Medicines Used in the Treatment of Drug-Resistant Tuberculosis; 2018.
  • Ishimoto T, Kato Y. [Physiolgically-based pharmacokinetics: theory and examples.]. Clin Calcium. 2016;26(11):1529–1537. Japanese.27777386
  • Davies PD. The role of DOTS in tuberculosis treatment and control. Am J Respir Med. 2003;2(3):203–209. doi:10.1007/BF0325664914720002
  • Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–854. doi:10.1007/s40265-014-0222-824846578
  • Hall RG, Leff RD, Gumbo T. Treatment of active pulmonary tuberculosis in adults: current standards and recent advances. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2009;29(12):1468–1481. doi:10.1592/phco.29.12.146819947806
  • Jotam G, Pasipanodya SS, Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clinical Infectious Diseases. 2012;55(2):169–177. doi:10.1093/cid/cis35322467670
  • Wilby KJ. Review of evidence for measuring drug concentrations of first-line antitubercular agents in adults. Clin Pharmacokinet. 2014;53:873–890.25172553
  • Mota L, Campbell JR, Cook VJ, Marra F, Johnston J. Therapeutic drug monitoring in anti-tuberculosis treatment: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2016;20(6):819–826.27155187
  • Sekaggya-Wiltshirea C, Mohammed Lamordea AN, Kiraggaa KE, et al. The utility of pharmacokinetic studies for the evaluation of exposureresponse relationships for standard dose anti-tuberculosis drugs. Tuberculosis. 2018;108:77–82.29523331
  • Perumal R, Naidoo K, Naidoo A, et al. A systematic review and meta-analysis of first-line tuberculosis drug concentrations and treatment outcomes. Int J Tuberc Lung Dis. 2020;24(1):48–64.
  • Daly J, et al. A hierarchy of evidence for assessing qualitative health research. J Clin Epidemiol. 2007;60(1):43–49. doi:10.1016/j.jclinepi.2006.03.01417161753
  • Tesemma Sileshi ET, Makonnen E, Aklilu E. The influence of pharmacokinetics of first line anti-tubercular drugs on treatment outcome: a systematic review. PROSPERO. 2019.
  • Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–1473. doi:10.1093/infdis/jit35223901086
  • Gengiah TN, Botha JH, Soowamber D, et al. Low rifampicin concentrations in tuberculosis patients with HIV infection. J Infect Dev Ctries. 2014;8(8):987–993. doi:10.3855/jidc.469625116663
  • Svensson EM, Svensson RJ, Te Brake LHM, et al. The potential for treatment shortening with higher rifampicin doses: relating drug exposure to treatment response in patients with pulmonary tuberculosis. Clin Infect Dis. 2018;67(1):34–41. doi:10.1093/cid/ciy02629917079
  • Sekaggya-Wiltshire C, von Braun A, Lamorde M, et al. Delayed sputum culture conversion in tuberculosis-human immunodeficiency virus-coinfected patients with low isoniazid and rifampicin concentrations. Clin Infect Dis. 2018;67(5):708–716. doi:10.1093/cid/ciy17929514175
  • Rockwood N, Pasipanodya JG, Denti P, et al. Concentration-dependent antagonism and culture conversion in pulmonary tuberculosis. Clin Infect Dis. 2017;64(10):1350–1359. doi:10.1093/cid/cix15828205671
  • Aarnoutse RE, et al. Pharmacokinetics, tolerability, and bacteriological response of rifampin administered at 600, 900, and 1200 milligrams daily in patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2017;61(11).
  • Prahl JB, Johansen IS, Cohen AS, et al. Clinical significance of 2 h plasma concentrations of first-line anti-tuberculosis drugs: a prospective observational study. J Antimicrob Chemother. 2014;69(10):2841–2847. doi:10.1093/jac/dku21025140577
  • Velasquez GE, Brooks MB, Coit JM, et al. Efficacy and safety of high-dose rifampin in pulmonary tuberculosis. a randomized controlled trial. Am J Respir Crit Care Med. 2018;198(5):657–666. doi:10.1164/rccm.201712-2524OC29954183
  • Requena-Mendez A, Davies G, Waterhouse D, et al. Effects of dosage, comorbidities, and food on isoniazid pharmacokinetics in Peruvian tuberculosis patients. Antimicrob Agents Chemother. 2014;58(12):7164–7170. doi:10.1128/AAC.03258-1425224007
  • Burhan E, Ruesen C, Ruslami R, et al. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2013;57(8):3614–3619. doi:10.1128/AAC.02468-1223689725
  • Ramachandran G, et al. Factors influencing tuberculosis treatment outcome in adult patients treated with thrice-weekly regimens in India. Antimicrob Agents Chemother. 2017;61(5).
  • Geetha Ramachandran PC, Gaikwad S, Kupparam HKA, et al. Subtherapeutic rifampicin concentration is associated with unfavorable tuberculosis treatment outcomes. Clin Infect Dis. 2020;70(7):1463–1470. doi:10.1093/cid/ciz38031075166
  • Keeler E, Perkins MD, Small P, et al. Reducing the global burden of tuberculosis: the contribution of improved diagnostics. Nature. 2006;444(S1):49–57. doi:10.1038/nature05446
  • Walzl G, McNerney R, Du Plessis N, et al. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis. 2018;18(7):e199–e210. doi:10.1016/S1473-3099(18)30111-729580818
  • Lienhardt C, Raviglione MC. TB elimination requires discovery and development of transformational agents. Appl Sci. 2020;10(7).
  • Floyd K, Glaziou P, Houben RMGJ, et al. Global tuberculosis targets and milestones set for 2016–2035: definition and rationale. Int J Tuberc Lung Dis. 2018;22(7):723–730. doi:10.5588/ijtld.17.083529914597
  • McCallum AD, Sloan DJ. The importance of clinical pharmacokinetic–pharmacodynamic studies in unraveling the determinants of early and late tuberculosis outcomes. Int J Pharmacokinetics. 2017;2(3):195–212. doi:10.4155/ipk-2017-0004
  • Saktiawati AMI, Harkema M, Setyawan A, et al. Optimal sampling strategies for therapeutic drug monitoring of first-line tuberculosis drugs in patients with tuberculosis. Clin Pharmacokinet. 2019;58(11):1445–1454. doi:10.1007/s40262-019-00763-330997650
  • Nicol MP, Wilkinson RJ. The clinical consequences of strain diversity in Mycobacterium tuberculosis. Trans R Soc Trop Med Hyg. 2008;102(10):955–965. doi:10.1016/j.trstmh.2008.03.02518513773
  • Dusthackeer A, Saadhali SA, Thangam M, et al. Wild-Type MIC distribution for re-evaluating the critical concentration of anti-tb drugs and pharmacodynamics among tuberculosis patients from South India. Front Microbiol. 2020;11:1182. doi:10.3389/fmicb.2020.0118232695072