882
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Metformin as a Potential Adjuvant Antimicrobial Agent Against Multidrug Resistant Bacteria

, ORCID Icon, & ORCID Icon
Pages 83-90 | Published online: 11 May 2021

References

  • Amaral L, Viveiros M, Fau - Kristiansen JE, Kristiansen JE. “Non-Antibiotics”: alternative therapy for the management of MDRTB and MRSA in economically disadvantaged countries. Curr Drug Targets. 2006;7(7):887–891. doi:10.2174/13894500677770953916842219
  • Ouhara K, Komatsuzawa H, Kawai T, et al. Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus. J Antimicrob Chemother. 2008;61(6):1266–1269. doi:10.1093/jac/dkn10618367458
  • Thomson JM, Bonomo RA. The threat of antibiotic resistance in gram-negative pathogenic bacteria: beta-lactams in peril! Curr Opin Microbiol. 2005;8(5):518–524. doi:10.1016/j.mib.2005.08.01416126451
  • Organization WH. 2019.
  • Al Tall Y, Abualhaijaa A, Qaoud MT, Alsaggar M, Masadeh M, Alzoubi KH. The ultrashort peptide OW: a new antibiotic adjuvant. Curr Pharm Biotechnol. 2019;20(9):745–754. doi:10.2174/138920102066619061811125231258076
  • Lee NY, Lee HC, Fau - Ko N-Y, et al. Clinical and economic impact of multidrug resistance in nosocomial Acinetobacter baumannii bacteremia. Infect Control Hosp Epidemiol. 2007;28(6):713–719.17520546
  • Renwick M, Mossialos E. What are the economic barriers of antibiotic R&D and how can we overcome them? Expert Opin Drug Discov. 2018;13(10):889–892.30175625
  • Silver LL. Challenges of antibacterial discovery. Clin Microbiol Rev. 2011;24(1):71–109. doi:10.1128/CMR.00030-1021233508
  • Coates ARM, Hu Y, Holt J, Yeh P. Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction. Expert Rev Anti Infect Ther. 2020;18(1):5–15.31847614
  • Kristiansen JE, Hendricks O, Delvin T, et al. Reversal of resistance in microorganisms by help of non-antibiotics. J Antimicrob Chemother. 2007;59(6):1271–1279. doi:10.1093/jac/dkm07117403708
  • Ahmed A, Azim A, Gurjar M, Baronia AK. Current concepts in combination antibiotic therapy for critically ill patients. Indian J Crit Care Med. 2014;18(5):310–314. doi:10.4103/0972-5229.13249524914260
  • Meherunisa JS, Seth V. Study of metformin effect on antimicrobial property. Int Archi BioMed Clin Res. 2018;4:85–87.
  • Cederlund H, Mårdh PA. Antibacterial activities of non-antibiotic drugs. J Antimicrob Chemother. 1993;32(3):355–365.8262858
  • Tr P, Patil S, Patil S, Patil A. Antimicrobial potential of metformin. Int J Pharmacogn Phytochem Res. 2019;11(3):230–234.
  • Karak P, Kumar KA, Mazumdar K, Mookerjee M, Dastidar S. Antibacterial potential of an antispasmodic drug dicyclomine hydrochloride. Indian J Med Res. 2003;118:192–196.14723484
  • Lagadinou M, Onisor MO, Rigas A, et al. Antimicrobial properties on non-antibiotic drugs in the era of increased bacterial resistance. Antibiotics. 2020;9(3):107. doi:10.3390/antibiotics9030107
  • Kristiansen JE, Amaral L. The potential management of resistant infections with non-antibiotics. J Antimicrob Chemother. 1997;40(3):319–327.9338482
  • Amaral L, Kristiansen JE, Fau - Frolund Thomsen V, Frolund Thomsen V, Fau - Markovich B, Markovich B. The effects of chlorpromazine on the outer cell wall of Salmonella typhimurium in ensuring resistance to the drug. Int J Antimicrob Agents. 2000;14(3):225–229.10773492
  • Amaral L, Kristiansen JE, Fau - Abebe LS, Abebe LS, Fau - Millett W, Millett W. Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed tuberculosis. J Antimicrob Chemother. 1996;38(6):1049–1053.9023652
  • Cao Y, Naseri M, He Y, Xu C, Walsh LJ, Ziora ZM. Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. J Glob Antimicrob Resist. 2020;21:445–451. doi:10.1016/j.jgar.2019.11.01231830536
  • Opal SM. Non-antibiotic treatments for bacterial diseases in an era of progressive antibiotic resistance. Crit Care. 2016;20(1):397. doi:10.1186/s13054-016-1549-127978847
  • Dastidar SG, Fau - Saha PK, Saha PK, et al. Antibacterial activity of ambodryl and benadryl. J Appl Microbiol. 1976;41(2):209–214.
  • Molnár J, Fau - Mándi Y, Mándi Y, Fau - Király J, Király J. Antibacterial effect of some phenothiazine compounds and R-factor elimination by chlorpromazine. Acta Microbiol Acad Sci Hung. 1976;23(1):45–54.820163
  • Nasrin F. Study of antimicrobial and antioxidant potentiality of anti-diabetic drug metformin. Int J Pharm Drug Anal. 2014:220–224.
  • Duncan AI, Koch CG, Xu M, et al. Recent metformin ingestion does not increase in-hospital morbidity or mortality after cardiac surgery. Anesth Analg. 2007;104(1):42–50. doi:10.1213/01.ane.0000242532.42656.e717179241
  • Shih C-J, Wu Y-L, Chao P-W, et al. Association between use of oral anti-diabetic drugs and the risk of sepsis: a Nested Case-Control Study. Sci Rep. 2015;5(1):15260. doi:10.1038/srep1526026463557
  • Mor A, Petersen I, Sørensen HT, Thomsen RW. Metformin and other glucose-lowering drug initiation and rates of community-based antibiotic use and hospital-treated infections in patients with type 2 diabetes: a Danish nationwide population-based cohort study. BMJ Open. 2016;6(8):e011523. doi:10.1136/bmjopen-2016-011523
  • Liu Y, Jia Y, Yang K, et al. Metformin restores tetracyclines susceptibility against multidrug resistant bacteria. Adv Sci. 2020;7(12):1902227. doi:10.1002/advs.201902227
  • Xiao Y, Liu F, Li S, et al. Metformin promotes innate immunity through a conserved PMK-1/p38 MAPK pathway. Virulence. 2020;11(1):39–48. doi:10.1080/21505594.2019.170630531851866
  • Komatsuzawa H, Ohta K, Fau - Sugai M, et al. Tn551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus. J Antimicrob Chemother. 2000;45(4):421–431.10896508
  • Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrobial Chemother. 2001;48(suppl_1):5–16.
  • Al Tall Y, Abualhaijaa A, Alsaggar M, Almaaytah A, Masadeh M, Alzoubi KH. Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. Infect Drug Resist. 2019;12:1035–1045. doi:10.2147/IDR.S19947331118709
  • Ammerman NC, Beier-Sexton M, Azad AF. Growth and maintenance of Vero cell lines. Curr Protoc Microbiol. 2008;Appendix 4:Appendix–4E. doi:10.1002/9780471729259.mca04es11
  • Singhal A, Jie L, Kumar P, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med. 2014;6(263):263ra159. doi:10.1126/scitranslmed.3009885
  • Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med. 2017;8(4):266–275. doi:10.1016/j.jaim.2017.05.00428869082
  • Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1–12. doi:10.1086/59501119035777
  • Baquero F, Coque TM, de la Cruz F. Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother. 2011;55(8):3649. doi:10.1128/AAC.00013-1121576439
  • Thanacoody HK. Thioridazine: resurrection as an antimicrobial agent? Br J Clin Pharmacol. 2007;64(5):566–574.17764469
  • Melander RJ, Melander C. The challenge of overcoming antibiotic resistance: an adjuvant approach? ACS Infect Dis. 2017;3(8):559–563. doi:10.1021/acsinfecdis.7b0007128548487
  • Kristiansen JE, Mortensen I. Antibacterial effect of four phenothiazines. Pharmacol Toxicol. 1987;60(2):100–103. doi:10.1111/j.1600-0773.1987.tb01504.x2883644
  • Ejim L, Farha MA, Falconer SB, et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol. 2011;7(6):348–350. doi:10.1038/nchembio.55921516114
  • Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143–156. doi:10.1038/nrendo.2013.25624393785
  • Siavash M, Tabbakhian M, Sabzghabaee AM, Razavi N. Severity of gastrointestinal side effects of metformin tablet compared to metformin capsule in type 2 diabetes mellitus patients. J Res Pharm Pract. 2017;6(2):73–76. doi:10.4103/jrpp.JRPP_17_228616428
  • American Diabetes Association. Type 2 diabetes in children and adolescents. Pediatrics. 2000;105(3):671–680. doi:10.1542/peds.105.3.67110699131
  • Scarpello JH, Howlett HC. Metformin therapy and clinical uses. Diabetes Vasc Dis Res. 2008;5(3):157–167. doi:10.3132/dvdr.2008.027
  • Vashisht R, Brahmachari SK. Metformin as a potential combination therapy with existing front-line antibiotics for tuberculosis. J Transl Med. 2015;13(1):83. doi:10.1186/s12967-015-0443-y25880846
  • Gill SK, Hui K, Farne H, et al. Increased airway glucose increases airway bacterial load in hyperglycaemia. Sci Rep. 2016;6(1):1.28442746
  • Dash AK, Behera SR, Pattanaik BK, Palo AK. Study of antimicrobial property of some hypoglycemic drugs. Chron Young Sci. 2011;2(4):219. doi:10.4103/2229-5186.93029
  • Marupuru S, Senapati P, Pathadka S, Miraj SS, Unnikrishnan MK, Manu MK. Protective effect of metformin against tuberculosis infections in diabetic patients: an observational study of south Indian tertiary healthcare facility. Braz J Infect Dis. 2017;21(3):312–316.28199824
  • Singhal A, Jie L, Kumar P, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med. 2014;6(263):263ra159.
  • Nasri H, Rafieian-Kopaei M. Metformin: current knowledge. J Res Med Sci. 2014;19(7):658–664.25364368
  • Hundal RS, Inzucchi SE. Metformin: new understandings, new uses. Drugs. 2003;63(18):1879–1894.12930161
  • Scarpello JH, Howlett HC. Metformin therapy and clinical uses. Diabetes Vasc Dis Res. 2008;5(3):157–167.
  • Śmieszek A, Basińska K, Chrząstek K, Marycz K. In vitro and in vivo effects of metformin on osteopontin expression in mice adipose-derived multipotent stromal cells and adipose tissue. J Diabetes Res. 2015;2015:814896. doi:10.1155/2015/81489626064989
  • Ullah A, Ashraf M, Javeed A, Anjum AA, Attiq A, Ali S. Enhancement of anti-proliferative activities of metformin, when combined with celecoxib, without increasing DNA damage. Environ Toxicol Pharmacol. 2016;45:227–234.27327526
  • Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20(6):953–966. doi:10.1016/j.cmet.2014.09.01825456737
  • Sant’Anna JR, Yajima JP, Fau - Rosada LJ, et al. Metformin’s performance in in vitro and in vivo genetic toxicology studies. Exp Biol Med. 2013;238(7):803–810.
  • Al-Janabi AAHS. In vitro antibacterial activity of Ibuprofen and acetaminophen. J Glob Infect Dis. 2010;2(2):105–108. doi:10.4103/0974-777X.6288020606962
  • Poulsen M, Klitgaard JK, Christensen JB, et al. Comparison of antibacterial activity of (-) thioridazine and racemic thioridazine in Staphylococcus aureus. Am J Bioequivalence Bioavailab. 2018;1(1):1–9.
  • Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67(4):593–656.14665678
  • Kajiwara C, Kusaka YA-O, Kimura S, et al. Metformin mediates protection against legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species. J Immunol. 2018;200(2):623–631.29246951