228
Views
11
CrossRef citations to date
0
Altmetric
Review

Metabolite Profiling in Anticancer Drug Development: A Systematic Review

ORCID Icon & ORCID Icon
Pages 1401-1444 | Published online: 09 Apr 2020

References

  • BrayF, FerlayJ, SoerjomataramI, SiegelRL, TorreLA, JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • BarthT, HabenschusMD, Lima MoreiraF, Ferreira LdeS, LopesNP, Moraes de OliveiraAR. In vitro metabolism of the lignan (-)-grandisin, an anticancer drug candidate, by human liver microsomes. Drug Test Anal. 2015;7(9):780–786. doi:10.1002/dta.174325594619
  • ChenY, GuoJ, TangY, et al. Pharmacokinetic profile and metabolite identification of yuanhuapine, a bioactive component in Daphne genkwa by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J Pharm Biomed Anal. 2015;112:60–69. doi:10.1016/j.jpba.2015.04.02325956226
  • DubbelmanAC, UpthagroveA, BeijnenJH, et al. Disposition and metabolism of 14C-dovitinib (TKI258), an inhibitor of FGFR and VEGFR, after oral administration in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2012;70(5):653–663. doi:10.1007/s00280-012-1947-223010851
  • KimE, KimH, SuhK, et al. Metabolite identification of a new tyrosine kinase inhibitor, HM781-36B, and a pharmacokinetic study by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2013;27(11):1183–1195. doi:10.1002/rcm.655923650031
  • GuY, ChangTT, WangJ, et al. Reductive metabolism influences the toxicity and pharmacokinetics of the hypoxia-targeted benzotriazine di-oxide anticancer agent SN30000 in mice. Front Pharmacol. 2017;8:531. doi:10.3389/fphar.2017.0053128848445
  • ShresthaR, JoJJ, LeeD, LeeT, LeeS. Characterization of in vitro and in vivo metabolism of leelamine using liquid chromatography-tandem mass spectrometry. Xenobiotica. 2019;49(5):577–583.29790809
  • Na-BangchangK, PlengsuriyakarnT, KarbwangJ. Research and development of Atractylodes lancea (Thunb) DC. as a promising candidate for cholangiocarcinoma chemotherapeutics. J Evid Based Complementary Altern Med. 2017;2017:16.
  • YaoD, LiZ, HuoC, et al. Identification of in vitro and in vivo metabolites of alantolactone by UPLC-TOF-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1033–1034:250–260. doi:10.1016/j.jchromb.2016.08.034
  • ElhassanG. Drug development: stages of drug development. J Pharmacovigil. 2015;3:3.
  • GunaratnaC. Drug metabolism and pharmacokinetics in drug discovery: a primer for bioanalytical chemists, part I. Curr Sep. 2000;19(1):17–23.
  • GonzalezFJ, TukeyRH. Drug Metabolism. 11th ed. New York: McGraw Hills; 2006.
  • ChenL, Conda-SheridanM, ReddyPV, et al. Identification, synthesis, and biological evaluation of the metabolites of 3-amino-6-(3ʹ-aminopropyl)-5H-indeno[1,2-c]isoquinoline-5,11-(6H)dione (AM6-36), a promising rexinoid lead compound for the development of cancer chemotherapeutic and chemopreventive agents. J Med Chem. 2012;55(12):5965–5981.22712432
  • MiaoXS, SongP, SavageRE, et al. Identification of the in vitro metabolites of 3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione (ARQ 501; beta-lapachone) in whole blood. Drug Metab Dispos. 2008;36(4):641–648. doi:10.1124/dmd.107.01857218180274
  • SavageRE, TylerAN, MiaoXS, ChanTC. Identification of a novel glucosylsulfate conjugate as a metabolite of 3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione (ARQ 501, beta-lapachone) in mammals. Drug Metab Dispos. 2008;36(4):753–758. doi:10.1124/dmd.107.01865518227145
  • RidouxL, SemiondDR, VincentC, et al. A phase I open-label study investigating the disposition of [14C]-cabazitaxel in patients with advanced solid tumors. Anticancer Drugs. 2015;26(3):350–358. doi:10.1097/CAD.000000000000018525462133
  • DesmoulinF, GilardV, MartinoR, Malet-MartinoM. Isolation of an unknown metabolite of capecitabine, an oral 5-fluorouracil prodrug, and its identification by nuclear magnetic resonance and liquid chromatography-tandem mass spectrometry as a glucuroconjugate of 5ʹ-deoxy-5-fluorocytidine, namely 2ʹ-(beta-D-glucuronic acid)-5ʹ-deoxy-5-fluorocytidine. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;792(2):323–332. doi:10.1016/s1570-0232(03)00319-2
  • JiaL, WongH, WangY, GarzaM, WeitmanSD. Carbendazim: disposition, cellular permeability, metabolite identification, and pharmacokinetic comparison with its nanoparticle. J Pharm Sci. 2003;92(1):161–172. doi:10.1002/jps.1027212486692
  • RennerUD, PiperopoulosG, GebhardtR, EhningerG, ZellerKP. The oxidative biotransformation of losoxantrone (CI-941). Drug Metab Dispos. 2002;30(4):464–478. doi:10.1124/dmd.30.4.46411901102
  • BanduR, AhnHS, LeeJW, et al. Liquid chromatography electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) study for the identification and characterization of in vivo metabolites of cisplatin in rat kidney cancer tissues: online hydrogen/deuterium (H/D) exchange study. PLoS One. 2015;10(8):e0134027. doi:10.1371/journal.pone.013402726244343
  • JohnsonWD, MuzzioM, DetrisacCJ, KapetanovicIM, KopelovichL, McCormickDL. Subchronic oral toxicity and metabolite profiling of the p53 stabilizing agent, CP-31398, in rats and dogs. Toxicology. 2011;289(2):141–150. doi:10.1016/j.tox.2011.08.00921864638
  • KerdarRS, BaumannA, Brudny-KloppelM, BiereH, BlodeH, KuhnzW. Identification of 3 alpha-hydroxy-cyproterone acetate as a metabolite of cyproterone acetate in the bile of female rats and the potential of this and other already known or putative metabolites to form DNA adducts in vitro. Carcinogenesis. 1995;16(8):1835–1841. doi:10.1093/carcin/16.8.18357634411
  • PatelDK, ShockcorJP, ChangSY, SigelCW, HuberBE. Metabolism of a novel antitumor agent, crisnatol, by a human hepatoma cell line, Hep G2, and hepatic microsomes. Characterization of metabolites. Biochem Pharmacol. 1991;42(2):337–346. doi:10.1016/0006-2952(91)90721-G1650211
  • FenselauC, KanMN, BilletsS, ColvinM. Identification of phosphorodiamidic acid mustard as a human metabolite of cyclophosphamide. Cancer Res. 1975;35(6):1453–1457.1131817
  • YeoSC, SviripaVM, HuangM, et al. Analysis of trans-2,6-difluoro-4ʹ-(N,N-dimethylamino)stilbene (DFS) in biological samples by liquid chromatography-tandem mass spectrometry: metabolite identification and pharmacokinetics. Anal Bioanal Chem. 2015;407(24):7319–7332. doi:10.1007/s00216-015-8893-x26229026
  • Malet-MartinoMC, MartinoR, LopezA, et al. New approach to metabolism of 5ʹ-deoxy-5-fluorouridine in humans with fluorine-19 NMR. Cancer Chemother Pharmacol. 1984;13(1):31–35. doi:10.1007/BF004014436234105
  • ZamboninCG, PalmisanoF. Gas chromatography-mass spectrometry identification of a novel N3-methylated metabolite of 5ʹ-deoxy-5-fluorouridine in plasma of cancer patients undergoing chemotherapy. J Pharm Biomed Anal. 1996;14(11):1521–1528. doi:10.1016/0731-7085(96)01798-08877858
  • LafailleF, BanaigsB, InguimbertN, et al. Characterization of a new anticancer agent, EAPB0203, and its main metabolites: nuclear magnetic resonance and liquid chromatography-mass spectrometry studies. Anal Chem. 2012;84(22):9865–9872. doi:10.1021/ac302148323072539
  • LafailleF, SolassolI, EnjalbalC, et al. Structural characterization of in vitro metabolites of the new anticancer agent EAPB0503 by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal. 2014;88:429–440. doi:10.1016/j.jpba.2013.09.01524176748
  • FabianEJ, MetzlerM. Selective metabolism of E-3,4-bis(4-ethylphenyl)hex-3-ene in rat liver microsomes. Arch Toxicol. 2006;80(1):17–26. doi:10.1007/s00204-005-0007-716187102
  • StruckRF, ShortnacyAT, KirkMC, et al. Identification of metabolites of 9-beta-D-arabinofuranosyl-2-fluoroadenine, an antitumor and antiviral agent. Biochem Pharmacol. 1982;31(11):1975–1978. doi:10.1016/0006-2952(82)90407-57115418
  • TevellA, LennernasH, JonssonM, et al. Flutamide metabolism in four different species in vitro and identification of flutamide metabolites in human patient urine by high performance liquid chromatography/tandem mass spectrometry. Drug Metab Dispos. 2006;34(6):984–992. doi:10.1124/dmd.105.00851616540588
  • PavelS, HoldenJL, RileyPA. Metabolism of 4-hydroxyanisole: identification of major urinary excretory products. Pigment Cell Res. 1989;2(5):421–426. doi:10.1111/pcr.1989.2.issue-52587513
  • SantosA, ZanettaS, CresteilT, et al. Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res. 2000;6(5):2012–2020.10815927
  • Nilgün ÇömezoğluS, LyVT, ZhangD, et al. Biotransformation profiling of [14C]Ixabepilone in human plasma, urine and feces samples using accelerator mass spectrometry (AMS). Drug Metab Pharmacokinet. 2009;24(6):511–522. doi:10.2133/dmpk.24.51120045986
  • RaynaudFI, MistryP, DonaghueA, et al. Biotransformation of the platinum drug JM216 following oral administration to cancer patients. Cancer Chemother Pharmacol. 1996;38(2):155–162. doi:10.1007/s0028000504648616906
  • ZhangY, GuoX, LinET, BenetLZ. Overlapping substrate specificities of cytochrome P450 3A and P-glycoprotein for a novel cysteine protease inhibitor. Drug Metab Dispos. 1998;26(4):360–366.9531525
  • NassarAE, KingI, ParisBL, et al. An in vitro evaluation of the victim and perpetrator potential of the anticancer agent laromustine (VNP40101M), based on reaction phenotyping and inhibition and induction of cytochrome P450 enzymes. Drug Metab Dispos. 2009;37(9):1922–1930. doi:10.1124/dmd.109.02751619520774
  • LakhaniNJ, SparreboomA, XuX, et al. Characterization of in vitro and in vivo metabolic pathways of the investigational anticancer agent, 2-methoxyestradiol. J Pharm Sci. 2007;96(7):1821–1831. doi:10.1002/jps.2083717252610
  • SpanswickVJ, CummingsJ, RitchieAA, SmythJF. Pharmacological determinants of the antitumour activity of mitomycin C. Biochem Pharmacol. 1998;56(11):1497–1503. doi:10.1016/S0006-2952(98)00164-69827584
  • TakenagaN, IshiiM, NakajimaS, et al. In vivo metabolism of a new anticancer agent, 6-N-formylamino-12, 13-dihydro-1,11-dihydroxy-13-(beta-D-glucopyranosil)5H-indolo [2,3-a]pyrrolo [3,4-c]carbazole-5,7(6H)-dione (NB-506) in rats and dogs: pharmacokinetics, isolation, identification, and quantification of metabolites. Drug Metab Dispos. 1999;27(2):205–212.9929504
  • LiK, ChenX, ZhongD, LiY. Identification of the metabolites of 9-nitro-20(S)-camptothecin in rats. Drug Metab Dispos. 2003;31(6):792–797. doi:10.1124/dmd.31.6.79212756214
  • PrzybylskiM, CysykRL, ShoemakerD, AdamsonRH. Identification of conjugation and cleavage products in the thiolytic metabolism of the anticancer drug 4ʹ-(9-acridinylamino)methanesulfon-m-anisidide. Biomed Mass Spectrom. 1981;8(10):485–491. doi:10.1002/bms.12000810046895335
  • PhillipLR, JordenJL, RiveraMI, WolfeTL, UpadhyaybK, StinsonSF. Identification of the major metabolite of 2,5-bis(5-hydroxymethyl-2-thienyl)furan (NSC 652287), an antitumor agent, in the S9 subcellular fraction of dog liver cells. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;767(1):27–33. doi:10.1016/S0378-4347(01)00530-8
  • KashiyamaE, HutchinsonI, ChuaMS, et al. Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C- and N-oxidation products of antitumor 2-(4-aminophenyl)benzothiazoles. J Med Chem. 1999;42(20):4172–4184. doi:10.1021/jm990104o10514287
  • RenL, BiK, GongP, et al. Characterization of the in vivo and in vitro metabolic profile of PAC-1 using liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;876(1):47–53. doi:10.1016/j.jchromb.2008.10.006
  • RoyerI, AlvinerieP, ArmandJP, HoLK, WrightM, MonsarratB. Paclitaxel metabolites in human plasma and urine: identification of 6 alpha-hydroxytaxol, 7-epitaxol and taxol hydrolysis products using liquid chromatography/atmospheric-pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom. 1995;9(6):495–502. doi:10.1002/rcm.12900906057606045
  • BunSS, GiacomettiS, FanciullinoR, CiccoliniJ, BunH, AubertC. Effect of several compounds on biliary excretion of paclitaxel and its metabolites in guinea-pigs. Anticancer Drugs. 2005;16(6):675–682. doi:10.1097/00001813-200507000-0001315930897
  • ComteB, KasumovT, PierceBA, et al. Identification of phenylbutyrylglutamine, a new metabolite of phenylbutyrate metabolism in humans. J Mass Spectrom. 2002;37(6):581–590. doi:10.1002/jms.31612112740
  • ChapmanDE, MooreDJ, MelderDC, BreauA, PowisG. Isolation, identification and biological activity of a phyllanthoside metabolite produced in vitro by mouse plasma. Cancer Chemother Pharmacol. 1989;25(3):184–188. doi:10.1007/BF006895802598409
  • LiF, ZhangN, GorantlaS, GilbertsonSR, PatiD. The metabolism of separase inhibitor sepin-1 in human, mouse, and rat liver microsomes. Front Pharmacol. 2018;9:313. doi:10.3389/fphar.2018.0031329867452
  • RobinsonSP, Langan-FaheySM, JordanVC. Implications of tamoxifen metabolism in the athymic mouse for the study of antitumor effects upon human breast cancer xenografts. Eur J Cancer Clin Oncol. 1989;25(12):1769–1776. doi:10.1016/0277-5379(89)90347-72632258
  • PoonGK, WalterB, LonningPE, HortonMN, McCagueR. Identification of tamoxifen metabolites in human Hep G2 cell line, human liver homogenate, and patients on long-term therapy for breast cancer. Drug Metab Dispos. 1995;23(3):377–382.7628304
  • KisangaER, MoiLLH, GjerdeJ, MellgrenG, LienEA. Induction of hepatic drug-metabolising enzymes and tamoxifen metabolite profile in relation to administration route during low-dose treatment in nude rats. J Steroid Biochem Mol Biol. 2005;94(5):489–498. doi:10.1016/j.jsbmb.2004.12.03715876414
  • DahmaneE, BoccardJ, CsajkaC, et al. Quantitative monitoring of tamoxifen in human plasma extended to 40 metabolites using liquid-chromatography high-resolution mass spectrometry: new investigation capabilities for clinical pharmacology. Anal Bioanal Chem. 2014;406(11):2627–2640. doi:10.1007/s00216-014-7682-224633563
  • LeeJJ, SerajJ, YoshidaK, et al. Human mass balance study of TAS-102 using (14)C analyzed by accelerator mass spectrometry. Cancer Chemother Pharmacol. 2016;77(3):515–526. doi:10.1007/s00280-016-2965-226787503
  • PlacidiL, Cretton-ScottE, de SousaG, RahmaniR, PlacidiM, SommadossiJP. Disposition and metabolism of the angiogenic moderator O-(chloroacetyl-carbamoyl) fumagillol (TNP-470; AGM-1470) in human hepatocytes and tissue microsomes. Cancer Res. 1995;55(14):3036–3042.7606724
  • WangCL, ChenCK, WangYH, ChengYW. In search of the active metabolites of an anticancer piperazinedione, TW01003, in rats. Biomed Res Int. 2014;2014:793504.24864259
  • RashidMM, OhHA, LeeH, JungBH. Metabolite identification of AZD8055 in Sprague-Dawley rats after a single oral administration using ultra-performance liquid chromatography and mass spectrometry. J Pharm Biomed Anal. 2017;145:473–481. doi:10.1016/j.jpba.2017.06.05928743078
  • GongJ, GanJ, IyerRA. Identification of the oxidative and conjugative enzymes involved in the biotransformation of brivanib. Drug Metab Dispos. 2012;40(1):219–226. doi:10.1124/dmd.111.04245721989950
  • WatersNJ, SmithSA, OlhavaEJ, et al. Metabolism and disposition of the DOT1L inhibitor, pinometostat (EPZ-5676), in rat, dog and human. Cancer Chemother Pharmacol. 2016;77(1):43–62. doi:10.1007/s00280-015-2929-y26645404
  • MarullM, RochatB. Fragmentation study of imatinib and characterization of new imatinib metabolites by liquid chromatography-triple-quadrupole and linear ion trap mass spectrometers. J Mass Spectrom. 2006;41(3):390–404. doi:10.1002/jms.100216470567
  • RochatB, FayetA, WidmerN, et al. Imatinib metabolite profiling in parallel to imatinib quantification in plasma of treated patients using liquid chromatography-mass spectrometry. J Mass Spectrom. 2008;43(6):736–752. doi:10.1002/jms.136918286663
  • VenturaV, SolaJ, CelmaC, PeraireC, ObachR. In vitro metabolism of irosustat, a novel steroid sulfatase inhibitor: interspecies comparison, metabolite identification, and metabolic enzyme identification. Drug Metab Dispos. 2011;39(7):1235–1246. doi:10.1124/dmd.111.03831521464173
  • LolkemaMP, BohetsHH, ArkenauHT, et al. The c-Met tyrosine kinase inhibitor JNJ-38877605 causes renal toxicity through species-specific insoluble metabolite formation. Clin Cancer Res. 2015;21(10):2297–2304. doi:10.1158/1078-0432.CCR-14-325825745036
  • DubbelmanAC, NijenhuisCM, JansenRS, et al. Metabolite profiling of the multiple tyrosine kinase inhibitor lenvatinib: a cross-species comparison. Invest New Drugs. 2016;34(3):300–318. doi:10.1007/s10637-016-0342-y27018262
  • LiuW, LiS, WuY, et al. Metabolic profiles of neratinib in rat by using ultra-high-performance liquid chromatography coupled with diode array detector and Q-exactive orbitrap tandem mass spectrometry. Biomed Chromatogr. 2018:e4272. doi:10.1002/bmc.427229726026
  • ChoSY, CosenzaSC, PallelaV, et al. Determination of the glucuronide metabolite of ON 013100, a benzylstyrylsulfone antineoplastic drug, in colon cancer cells using LC/MS/MS. J Pharm Biomed Anal. 2013;75:138–144. doi:10.1016/j.jpba.2012.11.02223261806
  • MacLeodAK, LinD, HuangJT, McLaughlinLA, HendersonCJ, WolfCR. Identification of novel pathways of osimertinib disposition and potential implications for the outcome of lung cancer therapy. Clin Cancer Res. 2018;24(9):2138–2147. doi:10.1158/1078-0432.CCR-17-355529437786
  • von RichterO, MassiminiG, ScheibleH, UdvarosI, JohneA. Pimasertib, a selective oral MEK1/2 inhibitor: absolute bioavailability, mass balance, elimination route, and metabolite profile in cancer patients. Br J Clin Pharmacol. 2016;82(6):1498–1508. doi:10.1111/bcp.1307827483391
  • ShiJ, ZhengL, LinZ, et al. Study of pharmacokinetic profiles and characteristics of active components and their metabolites in rat plasma following oral administration of the water extract of Astragali radix using UPLC–MS/MS. J Ethnopharmacol. 2015;169:183–194. doi:10.1016/j.jep.2015.04.01925917840
  • ChenCL, TaiHL, ZhuDM, UckunFM. Pharmacokinetic features and metabolism of calphostin C, a naturally occurring perylenequinone with antileukemic activity. Pharm Res. 1999;16(7):1003–1009. doi:10.1023/A:101892343009410450923
  • TianY, HeJ, ZhangR, et al. Integrated rapid resolution liquid chromatography-tandem mass spectrometric approach for screening and identification of metabolites of the potential anticancer agent 3,6,7-trimethoxyphenanthroindolizidine in rat urine. Anal Chim Acta. 2012;731:60–67. doi:10.1016/j.aca.2012.04.02422652265
  • TamvakopoulosC, DimasK, SofianosZD, et al. Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin. Clin Cancer Res. 2007;13(4):1269–1277. doi:10.1158/1078-0432.CCR-06-183917317839
  • TouilYS, AuzeilN, BoulinguezF, et al. Fisetin disposition and metabolism in mice: identification of geraldol as an active metabolite. Biochem Pharmacol. 2011;82(11):1731–1739. doi:10.1016/j.bcp.2011.07.09721840301
  • PhamMH, AuzeilN, RegazzettiA, et al. Identification of new flavone-8-acetic acid metabolites using mouse microsomes and comparison with human microsomes. Drug Metab Dispos. 2007;35(11):2023–2034. doi:10.1124/dmd.107.01701217664249
  • ChenM, LouY, WuY, et al. Characterization of in vivo and in vitro metabolites of furanodiene in rats by high performance liquid chromatography-electrospray ionization mass spectrometry and nuclear magnetic resonance spectra. J Pharm Biomed Anal. 2013;86:161–168. doi:10.1016/j.jpba.2013.08.00823998967
  • JiaYW, ZengZQ, ShiHL, et al. Characterization of in vitro metabolites of irisflorentin by rat liver microsomes using high-performance liquid chromatography coupled with tandem mass spectrometry. Biomed Chromatogr. 2016;30(9):1363–1370. doi:10.1002/bmc.369226840210
  • HeX, QiaoA, WangX, et al. Structural identification of methyl protodioscin metabolites in rats’ urine and their antiproliferative activities against human tumor cell lines. Steroids. 2006;71(9):828–833. doi:10.1016/j.steroids.2006.05.01316797625
  • TianT, JinY, MaY, et al. Identification of metabolites of oridonin in rats with a single run on UPLC-triple-TOF-MS/MS system based on multiple mass defect filter data acquisition and multiple data processing techniques. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1006:80–92. doi:10.1016/j.jchromb.2015.10.006
  • BoultonDW, WalleUK, WalleT. Fate of the flavonoid quercetin in human cell lines: chemical instability and metabolism. J Pharm Pharmacol. 1999;51(3):353–359. doi:10.1211/002235799177236710344638
  • BeumerJH, Rademaker-LakhaiJM, RosingH, et al. Metabolism of trabectedin (ET-743, Yondelis) in patients with advanced cancer. Cancer Chemother Pharmacol. 2007;59(6):825–837. doi:10.1007/s00280-006-0342-216988825
  • XiaoJ, ChenH, FuH, et al. Development of a novel sectional multiple filtering scheme for rapid screening and classifying metabolites of ziyuglycoside II in rat liver and excreta specimen based on high-resolution mass spectrometry. J Pharm Biomed Anal. 2016;129:310–319. doi:10.1016/j.jpba.2016.06.05327454082
  • Takimoto R, Wang W, Dicker DT, Rastinejad F, Lyssikatos J, el-Deiry WS. The Mutant p53-Conformation Modifying Drug, CP-31398, Can Induce Apoptosis. Cancer Biol Ther. 2002;1(1):47–55. doi:10.4161/cbt.1.1.41
  • RaoCV, SwamyMV, PatlollaJMR, KopelovichL. Suppression of familial adenomatous polyposis by CP-31398, a TP53 modulator, in APCmin/+ mice. Cancer Res. 2008;68(18):7670–7675. doi:10.1158/0008-5472.CAN-08-161018794156
  • NicolBM, PrasadS. The effects of cyclophosphamide alone and in combination with ascorbic acid against murine ascites Dalton’s lymphoma. Indian J Pharmacol. 2006;38(4):260–265. doi:10.4103/0253-7613.27022
  • CobhamMV, DonovanD. Ixabepilone: a new treatment option for the management of taxane-resistant metastatic breast cancer. Cancer Manag Res. 2009;1:69–77. doi:10.2147/CMAR.S572321188125
  • SnodgrassRG, CollierAC, CoonAE, PritsosCA. Mitomycin C inhibits ribosomal RNA: a novel cytotoxic mechanism for bioreductive drugs. J Biol Chem. 2010;285(25):19068–19075. doi:10.1074/jbc.M109.04047720418373
  • RenJ, BaillyC, ChairesJB. NB-506, an indolocarbazole topoisomerase I inhibitor, binds preferentially to triplex DNA. FEBS Lett. 2000;470(3):355–359. doi:10.1016/S0014-5793(00)01335-110745096
  • VerschraegenCF, GuptaE, LoyerE, et al. A phase II clinical and pharmacological study of oral 9-nitrocamptothecin in patients with refractory epithelial ovarian, tubal or peritoneal cancer. Anticancer Drugs. 1999;10(4):375–383. doi:10.1097/00001813-199904000-0000510378672
  • RiveraMI, StinsonSF, VisticaDT, JordenJL, KenneyS, SausvilleEA. Selective toxicity of the tricyclic thiophene NSC 652287 in renal carcinoma cell lines: differential accumulation and metabolism. Biochem Pharmacol. 1999;57(11):1283–1295. doi:10.1016/S0006-2952(99)00046-510230772
  • PuttKS, ChenGW, PearsonJM, et al. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat Chem Biol. 2006;2(10):543–550. doi:10.1038/nchembio81416936720
  • Al-KeilaniMS, Al-SawalhaNA. Potential of phenylbutyrate as adjuvant chemotherapy: an overview of cellular and molecular anticancer mechanisms. Chem Res Toxicol. 2017;30(10):1767–1777. doi:10.1021/acs.chemrestox.7b0014928930444
  • HicksKO, SiimBG, JaiswalJK, et al. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin Cancer Res. 2010;16(20):4946. doi:10.1158/1078-0432.CCR-10-143920732963
  • ParkJW, FinnRS, KimJS, et al. Phase II, open-label study of brivanib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2011;17(7):1973–1983. doi:10.1158/1078-0432.CCR-10-201121349999
  • HasinoffBB, WuX, NitissJL, KanagasabaiR, YalowichJC. The anticancer multi-kinase inhibitor dovitinib also targets topoisomerase I and topoisomerase II. Biochem Pharmacol. 2012;84(12):1617–1626. doi:10.1016/j.bcp.2012.09.02323041231
  • CortezAP, MenezesEGP, BenficaPL, et al. Grandisin induces apoptosis in leukemic K562 cells. Braz J Pharm Sci. 2017;53(1).
  • HashemzaeiM, Delarami FarA, YariA, et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol Rep. 2017;38(2):819–828. doi:10.3892/or.2017.576628677813
  • MartignoniM. Species and Strain Differences in Drug Metabolism in Liver and Intestine. s.n.; 2006:136.
  • SakumaT, KawasakiY, JarukamjornK, NemotoN. Sex differences of drug-metabolizing enzyme: female predominant expression of human and mouse cytochrome P450 3A isoforms. J Drug Metab Toxicol. 2012;3(3):325–337.
  • MugfordCA, KedderisGL. Sex-dependent metabolism of xenobiotics. Drug Metab Rev. 1998;30(3):441–498. doi:10.3109/036025398089963229710703