296
Views
46
CrossRef citations to date
0
Altmetric
Review

Volanesorsen in the Treatment of Familial Chylomicronemia Syndrome or Hypertriglyceridaemia: Design, Development and Place in Therapy

ORCID Icon & ORCID Icon
Pages 2623-2636 | Published online: 06 Jul 2020

References

  • ChristianJB, BourgeoisN, SnipesR, LoweKA. Prevalence of severe (500 to 2000 mg/dl) hypertriglyceridemia in United States adults. Am J Cardiol. 2011;107(6):891–897. doi:10.1016/j.amjcard.2010.11.00821247544
  • RashidN, SharmaPP, ScottRD, LinKJ, TothPP. Severe hypertriglyceridemia and factors associated with acute pancreatitis in an integrated health care system. J Clin Lipidol. 2016;10(4):880–890. doi:10.1016/j.jacl.2016.02.01927578119
  • DronJS, WangJ, CaoH, et al. Severe hypertriglyceridemia is primarily polygenic. J Clin Lipidol. 2019;13(1):80–88. doi:10.1016/j.jacl.2018.10.00630466821
  • ChaitA, EckelRH. The chylomicronemia syndrome is most often multifactorial: a narrative review of causes and treatment. Ann Intern Med. 2019;170(9):626–634. doi:10.7326/M19-020331035285
  • PedersenSB, LangstedA, NordestgaardBG. Nonfasting mild-to-moderate hypertriglyceridemia and risk of acute pancreatitis. JAMA Intern Med. 2016;176(12):1834–1842. doi:10.1001/jamainternmed.2016.687527820614
  • GaudetD, de WalJ, TremblayK, et al. Review of the clinical development of alipogene tiparvovec gene therapy for lipoprotein lipase deficiency. AtherosclerSuppl. 2010;11(1):55–60. doi:10.1016/j.atherosclerosissup.2010.03.004
  • Lloret LinaresC, PelletierAL, CzernichowS, et al. Acute pancreatitis in a cohort of 129 patients referred for severe hypertriglyceridemia. Pancreas. 2008;37(1):13. doi:10.1097/MPA.0b013e31816074a118580438
  • ChyzhykV, KozmicS, BrownAS, et al. Extreme hypertriglyceridemia: genetic diversity, pancreatitis, pregnancy, and prevalence. J Clin Lipidol. 2019;13(1):89–99.30352774
  • PallazolaVA, SajjaA, DerenbeckerR, et al. Prevalence of familial chylomicronemia syndrome in a quaternary care center. Eur J Prev Cardiol. 2019;2047487319888054.31718261
  • BrunzellJDBE, BiermanEL. Chylomicronemia syndrome. Interaction of genetic and acquired hypertriglyceridaemia. Med Clin North Am. 1982;66(2):455–468. doi:10.1016/S0025-7125(16)31430-47040847
  • BeigneuxAP, MiyashitaK, PlougM, et al. Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia. N Engl J Med. 2017;376(17):1647–1658. doi:10.1056/NEJMoa161193028402248
  • BrunzellJD, MillerNE, AlaupovicP, et al. Familial chylomicronemia due to a circulating inhibitor of lipoprotein lipase activity. J Lipid Res. 1983;24(1):12–19.6833877
  • VipperlaK, SomervilleC, FurlanA, et al. Clinical profile and natural course in a large cohort of patients with hypertriglyceridemia and pancreatitis. J Clin Gastroenterol. 2017;51(1):77–85. doi:10.1097/MCG.000000000000057927322530
  • DavidsonM, StevensonM, HsiehA, et al. The burden of familial chylomicronemia syndrome: results from the global IN-FOCUS study. J Clin Lipidol. 2018;12(4):898–907 e2. doi:10.1016/j.jacl.2018.04.00929784572
  • ChyzhykVKS, BrownAS, BrownAS, et al. Extreme hyperglyceridemia: genetic diversity, pancreatitis, pregnancy and prevalence. J Clin Lipidol. 2019;13(1):89–99. doi:10.1016/j.jacl.2018.09.00730352774
  • JulveJ, Martin-CamposJM, Escola-GilJC, Blanco-VacaF. Chylomicrons: advances in biology, pathology, laboratory testing, and therapeutics. Clin Chim Acta. 2016;455:134–148. doi:10.1016/j.cca.2016.02.00426868089
  • de VriesMA, KlopB, AlipourA, et al. In vivo evidence for chylomicrons as mediators of postprandial inflammation. Atherosclerosis. 2015;243(2):540–545. doi:10.1016/j.atherosclerosis.2015.10.02526523991
  • TremblayK, MethotJ, BrissonD, GaudetD. Etiology and risk of lactescent plasma and severe hypertriglyceridemia. J Clin Lipidol. 2011;5(1):37–44. doi:10.1016/j.jacl.2010.11.00421262505
  • BjornsonE, PackardCJ, AdielsM, et al. Apolipoprotein B48 metabolism in chylomicrons and very low-density lipoproteins and its role in triglyceride transport in normo- and hypertriglyceridemic human subjects. J Intern Med. 2019;7:548.
  • StroesE, MoulinP, ParhoferKG, ReboursV, LohrJM, AvernaM. Diagnostic algorithm for familial chylomicronemia syndrome. Atheroscler Suppl. 2017;23:1–7. doi:10.1016/j.atherosclerosissup.2016.10.00227998715
  • D’ErasmoL, Di CostanzoA, CassandraF, et al. Spectrum of mutations and long-term clinical outcomes in genetic chylomicronemia syndromes. Arterioscler Thromb Vasc Biol. 2019;39(12):2531–2541. doi:10.1161/ATVBAHA.119.31340131619059
  • PatelAP, PelosoGM, PirruccelloJP, et al. Targeted exonic sequencing of GWAS loci in the high extremes of the plasma lipids distribution. Atherosclerosis. 2016;250:63–68. doi:10.1016/j.atherosclerosis.2016.04.01127182959
  • KanterJE, ShaoB, KramerF, et al. Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes. J Clin Invest. 2019;130(10):4165–4179. doi:10.1172/JCI127308
  • WolskaA, ReimundM, RemaleyAT, ApolipoproteinC-I-I. The re-emergence of a forgotten factor. Curr Opin Lipidol. 2020;31(3):147–153. doi:10.1097/MOL.000000000000068032332429
  • Santamarina-FojoS. The familial chylomicronemia syndrome. Endocrinol Metab Clin North Am. 1998;27(3):551–567. doi:10.1016/S0889-8529(05)70025-69785052
  • NilssonSK, HeerenJ, OlivecronaG, et al. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis. 2011;219(1):15–21. doi:10.1016/j.atherosclerosis.2011.07.01921831376
  • BeigneuxAP, FongLG, BensadounA, et al. GPIHBP1 missense mutations often cause multimerization of GPIHBP1 and thereby prevent lipoprotein lipase binding. Circ Res. 2015;116(4):624–632. doi:10.1161/CIRCRESAHA.116.30508525387803
  • ViljoenA, WierzbickiAS. Diagnosis and treatment of severe hypertriglyceridemia. ExpertRevCardiovascTher. 2012;10(4):505–514.
  • MoulinP, DufourR, AvernaM, et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): expert panel recommendations and proposal of an “FCS score”. Atherosclerosis. 2018;275:265–272. doi:10.1016/j.atherosclerosis.2018.06.81429980054
  • GargR, RustagiT. Management of Hypertriglyceridemia Induced Acute Pancreatitis. Biomed Res Int. 2018;2018:4721357. doi:10.1155/2018/472135730148167
  • StefanuttiC, JuliusU. Treatment of primary hypertriglyceridemia states–General approach and the role of extracorporeal methods. Atheroscler Suppl. 2015;18:85–94. doi:10.1016/j.atherosclerosissup.2015.02.01725936310
  • BrownWV, GaudetD, GoldbergI, HegeleR. Roundtable on etiology of familial chylomicronemia syndrome. J Clin Lipidol. 2018;12(1):5–11. doi:10.1016/j.jacl.2017.12.01529452917
  • RouisM, DugiKA, PreviatoL, et al. Therapeutic response to medium-chain triglycerides and omega-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler Thromb Vasc Biol. 1997;17(7):1400–1406. doi:10.1161/01.ATV.17.7.14009261273
  • AhmadZ, WilsonDP. Familial chylomicronemia syndrome and response to medium-chain triglyceride therapy in an infant with novel mutations in GPIHBP1. J Clin Lipidol. 2014;8(6):635–639. doi:10.1016/j.jacl.2014.08.01025499947
  • JungMK, JinJ, KimHO, et al. A 1-month-old infant with chylomicronemia due to GPIHBP1 gene mutation treated by plasmapheresis. Ann Pediatr Endocrinol Metab. 2017;22(1):68–71. doi:10.6065/apem.2017.22.1.6828443263
  • OscarssonJ, Hurt-CamejoE. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids Health Dis. 2017;16(1):149. doi:10.1186/s12944-017-0541-328797250
  • PreissD, TikkanenMJ, WelshP, et al. Lipid-modifying therapies and risk of pancreatitis: a meta-analysis. JAMA. 2012;308(8):804–811. doi:10.1001/jama.2012.843922910758
  • ChaudhryR, ViljoenA, WierzbickiAS. Pharmacological treatment options for severe hypertriglyceridemia and familial chylomicronemia syndrome. Expert Rev Clin Pharmacol. 2018;11(6):589–598. doi:10.1080/17512433.2018.148036829842811
  • HegeleRA, BerberichAJ, BanMR, et al. Clinical and biochemical features of different molecular etiologies of familial chylomicronemia. J Clin Lipidol. 2018;12(4):920–927.e4. doi:10.1016/j.jacl.2018.03.09329748148
  • HogueJC, LamarcheB, DeshaiesY, et al. Differential effect of fenofibrate and atorvastatin on in vivo kinetics of apolipoproteins B-100 and B-48 in subjects with type 2 diabetes mellitus with marked hypertriglyceridemia. Metabolism. 2008;57(2):246–254. doi:10.1016/j.metabol.2007.09.00818191056
  • WongAT, ChanDC, BarrettPH, AdamsLA, WattsGF. Effect of omega-3 fatty acid ethyl esters on apolipoprotein B-48 kinetics in obese subjects on a weight-loss diet: a new tracer kinetic study in the postprandial state. J Clin Endocrinol Metab. 2014;99(8):E1427–35. doi:10.1210/jc.2013-403724606094
  • Lamon-FavaS, DiffenderferMR, BarrettPH, et al. Effects of different doses of atorvastatin on human apolipoprotein B-100, B-48, and A-I metabolism. J Lipid Res. 2007;48(8):1746–1753. doi:10.1194/jlr.M700067-JLR20017526934
  • Marco-BenediV, Lamiquiz-MoneoI, Alvarez-SalaLA, CiveiraF. Disappearance of recurrent pancreatitis after splenectomy in familial chylomicronemia syndrome. Atherosclerosis. 2018;275:342–345. doi:10.1016/j.atherosclerosis.2018.06.87030015297
  • CastagnetoM, De GaetanoA, MingroneG, et al. A surgical option for familial chylomicronemia associated with insulin-resistant diabetes mellitus. Obes Surg. 1998;8(2):191–198. doi:10.1381/0960892987655548099730393
  • HussainI, GargA. Lipodystrophy Syndromes. Endocrinol Metab Clin North Am. 2016;45(4):783–797. doi:10.1016/j.ecl.2016.06.01227823605
  • HussainI, PatniN, GargA. Lipodystrophies, dyslipidaemias and atherosclerotic cardiovascular disease. Pathology. 2019;51(2):202–212. doi:10.1016/j.pathol.2018.11.00430595509
  • Ozgen SaydamB, SonmezM, SimsirIY, et al. A subset of patients with acquired partial lipodystrophy developing severe metabolic abnormalities. Endocr Res. 2019;44(1–2):46–54. doi:10.1080/07435800.2018.151302930182761
  • BrownRJ, Araujo-VilarD, CheungPT, et al. The Diagnosis and Management of Lipodystrophy Syndromes: A Multi-Society Practice Guideline. J Clin Endocrinol Metab. 2016;101(12):4500–4511. doi:10.1210/jc.2016-246627710244
  • BrownWV, GargA, GordenP, ShamburekR. JCL roundtable: diagnosis and clinical management of lipodystrophy. J Clin Lipidol. 2016;10(4):728–736. doi:10.1016/j.jacl.2016.06.00527578101
  • Actis DatoV, ChiabrandoGA. The Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Lipid Metabolism, Glucose Homeostasis and Inflammation. Int J Mol Sci. 2018;19(6):1780. doi:10.3390/ijms19061780
  • LinoM, FarrS, BakerC, FullerM, TrigattiB, AdeliK. Intestinal scavenger receptor class B type I as a novel regulator of chylomicron production in healthy and diet-induced obese states. Am J Physiol Gastrointest Liver Physiol. 2015;309(5):G350–9. doi:10.1152/ajpgi.00086.201526138463
  • RammsB, GordtsP. Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol. 2018;29(3):171–179. doi:10.1097/MOL.000000000000050229547399
  • SacksFM. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol. 2015;26(1):56–63. doi:10.1097/MOL.000000000000014625551803
  • MendivilCO, ZhengC, FurtadoJ, LelJ, SacksFM. Metabolism of very-low-density lipoprotein and low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins. Arterioscler Thromb Vasc Biol. 2010;30(2):239–245. doi:10.1161/ATVBAHA.109.19783019910636
  • LiD, RodiaCN, JohnsonZK, et al. Intestinal basolateral lipid substrate transport is linked to chylomicron secretion and is regulated by apoC-III. J Lipid Res. 2019;60(9):1503–1515. doi:10.1194/jlr.M09246031152000
  • KhetarpalSA, ZengX, MillarJS, et al. A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels. Nat Med. 2017;23(9):1086–1094. doi:10.1038/nm.439028825717
  • SahebkarA, Simental-MendiaLE, KatsikiN, et al. Effect of fenofibrate on plasma apolipoprotein C-III levels: a systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open. 2019;8(11):e021508. doi:10.1136/bmjopen-2018-021508
  • AnderssonY, MajdZ, LefebvreAM, et al. Developmental and pharmacological regulation of apolipoprotein C-II gene expression. Comparison with apo C-I and apo C-III gene regulation. Arterioscler Thromb Vasc Biol. 1999;19(1):115–121. doi:10.1161/01.ATV.19.1.1159888873
  • OoiEM, WattsGF, ChanDC, et al. Effects of extended-release niacin on the postprandial metabolism of Lp(a) and ApoB-100-containing lipoproteins in statin-treated men with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2015;35(12):2686–2693. doi:10.1161/ATVBAHA.115.30613626515419
  • SavinovaOV, FillausK, HarrisWS, ShearerGC. Effects of niacin and omega-3 fatty acids on the apolipoproteins in overweight patients with elevated triglycerides and reduced HDL cholesterol. Atherosclerosis. 2015;240(2):520–525. doi:10.1016/j.atherosclerosis.2015.04.79325932792
  • LarssonM, AllanCM, JungRS, et al. Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL. J Lipid Res. 2017;58(9):1893–1902. doi:10.1194/jlr.M07822028694296
  • GuardiolaM, AlvaroA, VallveJC, et al. APOA5 gene expression in the human intestinal tissue and its response to in vitro exposure to fatty acid and fibrate. Nutr Metab Cardiovasc Dis. 2012;22(9):756–762. doi:10.1016/j.numecd.2010.12.00321489765
  • ZhangR. The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking. Open Biol. 2016;6(4):150272. doi:10.1098/rsob.15027227053679
  • WierzbickiAS, ViljoenA. Anti-sense oligonucleotide therapies for the treatment of hyperlipidaemia. Expert Opin Biol Ther. 2016;16(9):1125–1134. doi:10.1080/14712598.2016.119618227248482
  • GrahamMJ, LeeRG, BellTA 3rd, et al. Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112(11):1479–1490. doi:10.1161/CIRCRESAHA.111.30036723542898
  • Julia Paik SeanD, DugganS. Volanesorsen: first Global Approval. Drugs. 2019;79(12):1349–1354.31301033
  • European Medicines Agency. Volanesorsen: EU summary of product characteristics. Amsterdam, The Netherlands: European Medcines Agency; 2019 Available from: https://www.waylivra.eu/wp-content/uploads/2019/05/WAYLIVRA-SmPC.pdf. Accessed 620, 2020.
  • PostN, YuR, GreenleeS, et al. Metabolism and Disposition of Volanesorsen, a 2ʹ-O-(2 methoxyethyl) Antisense Oligonucleotide, Across Species. Drug Metab Dispos. 2019;47(10):1164–1173. doi:10.1124/dmd.119.08739531350288
  • GaudetD, BrissonD, TremblayK, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med. 2014;371(23):2200–2206. doi:10.1056/NEJMoa140028425470695
  • GaudetD, AlexanderVJ, BakerBF, et al. Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia. N Engl J Med. 2015;373(5):438–447. doi:10.1056/NEJMoa140028326222559
  • BlomDJ, O’DeaL, DigenioA, et al. Characterizing familial chylomicronemia syndrome: baseline data of the APPROACH study. J Clin Lipidol. 2018;12(5):1234–43 e5. doi:10.1016/j.jacl.2018.05.01330318066
  • WitztumJL, GaudetD, FreedmanSD, et al. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N Engl J Med. 2019;381(6):531–542. doi:10.1056/NEJMoa171594431390500
  • Gouni-BertholdI, AlexanderV, DigenioA, et al. Apolipoprotein C-III inhibition with volanesorsen in patients with hypertriglyceridemia (COMPASS): A randomized, double-blind, placebo-controlled trial. Atheroscler Suppl. 2017;28:e1–e2. doi:10.1016/j.atherosclerosissup.2017.08.003
  • GelrudA, DigenioA, AlexanderV, et al. Treatment with Volanesorsen (VLN) Reduced Triglycerides and Pancreatitis in Patients with FCS and sHTG vs Placebo: results of the APPROACH and COMPASS †. J Clin Lipidol. 2018;12(2):537. doi:10.1016/j.jacl.2018.03.032
  • ArcaM, HsiehA, SoranH, RosenblitP, O’DeaL, StevensonM. The effect of volanesorsen treatment on the burden associated with familial chylomicronemia syndrome: the results of the ReFOCUS study. Expert Rev Cardiovasc Ther. 2018;16(7):537–546. doi:10.1080/14779072.2018.148729029889589
  • European Medicines Agency. Volanesorsen (Waylivra): public assessment report Amsterdam, The Netherlands: European Medicines Agency; 2019 Available from: https;//www.ema.europa.eu/.
  • PaikJ, DugganS. Volanesorsen: first Global Approval. Drugs. 2019;79(12):1349–1354. doi:10.1007/s40265-019-01168-z31301033
  • DigenioA, DunbarRL, AlexanderVJ, et al. Antisense-Mediated Lowering of Plasma Apolipoprotein C-III by Volanesorsen Improves Dyslipidemia and Insulin Sensitivity in Type 2 Diabetes. Diabetes Care. 2016;39(8):1408–1415. doi:10.2337/dc16-012627271183
  • O’ConnellC, HorwoodK, NadamuniM. Correction of refractory thrombocytopenia and anemia following withdrawal of extended release niacin. Am J Hematol. 2016;91(7):E318. doi:10.1002/ajh.2437127012809
  • LandrayMJ, HaynesR, HopewellJC, et al.; HPS THRIVE Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371(3):203–212.25014686
  • NarayananP, CurtisBR, ShenL, et al. Underlying Immune Disorder May Predispose Some Transthyretin Amyloidosis Subjects to Inotersen-Mediated Thrombocytopenia. Nucleic Acid Ther. 2020;30(2):94–103. doi:10.1089/nat.2019.082932043907
  • Endocrinologic and Metabolic Drugs Advisory Committee Food and Drug Administration. FDA Briefing Document: EMDAC Meeting for Volanesorsen (Waylivra) Silver Spring. Maryland, USA: Food and Drug Adminstration; 2018 Available from:: www.fda.gov. Accessed 620, 2020.
  • National Institute for Health and Care Excellence (NICE). Volanesorsen for treating familial chylomicronemia syndrome (ID1326) London, United kingdom: national Institute for Health and Care Excellence; 2019 Available from: https://www.nice.org.uk/guidance/indevelopment/gid-hst10015/documents. Accessed 620, 2020.
  • GaudetD, StroesES, MethotJ, et al. Long-Term Retrospective Analysis of Gene Therapy with Alipogene Tiparvovec and Its Effect on Lipoprotein Lipase Deficiency-Induced Pancreatitis. Hum Gene Ther. 2016;27(11):916–925. doi:10.1089/hum.2015.15827412455
  • MacchiC, SirtoriCR, CorsiniA, SantosRD, WattsGF, RuscicaM. A new dawn for managing dyslipidemias: the era of RNA-based therapies. Pharmacol Res. 2019;150:104413. doi:10.1016/j.phrs.2019.10441331449975
  • AlexanderVJ, XiaS, HurhE, et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J. 2019;40(33):2785–2796. doi:10.1093/eurheartj/ehz20931329855
  • GaudetD, MethotJ, DeryS, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther. 2013;20(4):361–369. doi:10.1038/gt.2012.4322717743
  • MorrisonC. $1-million price tag set for Glybera gene therapy. Nat Biotechnol. 2015;33(3):217–218. doi:10.1038/nbt0315-21725748892
  • Yla-HerttualaS. Glybera’s second act: the curtain rises on the high cost of therapy. Mol Ther. 2015;23(2):217–218. doi:10.1038/mt.2014.24825633169
  • WolskaA, LoL, SviridovDO, et al. A dual apolipoprotein C-II mimetic-apolipoprotein C-III antagonist peptide lowers plasma triglycerides. Sci Transl Med. 2020;12(528):528. doi:10.1126/scitranslmed.aaw7905
  • AlonsoR, CuevasA, MataP. Lomitapide: a review of its clinical use, efficacy, and tolerability. Core Evid. 2019;14:19–30. doi:10.2147/CE.S17416931308834
  • SacksFM, StanesaM, HegeleRA. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide. JAMA Intern Med. 2014;174(3):443–447. doi:10.1001/jamainternmed.2013.1330924366202
  • MeyersCD, TremblayK, AmerA, ChenJ, JiangL, GaudetD. Effect of the DGAT1 inhibitor pradigastat on triglyceride and apoB48 levels in patients with familial chylomicronemia syndrome. Lipids Health Dis. 2015;14(1):8. doi:10.1186/s12944-015-0006-525889044
  • DeweyFE, GusarovaV, DunbarRL, et al. Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease. N Engl J Med. 2017;377(3):211–221. doi:10.1056/NEJMoa161279028538136
  • MinicocciI, TikkaA, PoggiogalleE, et al. Effects of angiopoietin-like protein 3 deficiency on postprandial lipid and lipoprotein metabolism. J Lipid Res. 2016;57(6):1097–1107. doi:10.1194/jlr.P06618327040449
  • GrahamMJ, LeeRG, BrandtTA, et al. Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides. N Engl J Med. 2017;377(3):222–232. doi:10.1056/NEJMoa170132928538111
  • GaudetD, GipeD, HovinghK, et al. Safety and efficacy of evinacumab, a monoclonal antibody to ANGPTL3, in patients with homozygous familial hypercholesterolemia: a single-arm, open-label, proof-of-concept study. Atherosclerosis. 2017;263:e9. doi:10.1016/j.atherosclerosis.2017.06.057
  • ChadwickAC, EvittNH, LvW, MusunuruK. Reduced Blood Lipid Levels With In Vivo CRISPR-Cas9 Base Editing of ANGPTL3. Circulation. 2018;137(9):975–977. doi:10.1161/CIRCULATIONAHA.117.03133529483174
  • OralEA, GordenP, CochranE, et al. Long-term effectiveness and safety of metreleptin in the treatment of patients with partial lipodystrophy. Endocrine. 2019;64(3):500–511. doi:10.1007/s12020-019-01862-830805888