158
Views
22
CrossRef citations to date
0
Altmetric
Original Research

Miconazole Contributes to NRF2 Activation by Noncanonical P62-KEAP1 Pathway in Bladder Cancer Cells

ORCID Icon, , , , , , ORCID Icon & show all
Pages 1209-1218 | Published online: 24 Mar 2020

References

  • NguyenT, NioiP, PickettCB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284(20):13291–13295. doi:10.1074/jbc.R90001020019182219
  • CalkinsMJ, JohnsonDA, TownsendJA, et al. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal. 2009;11(3):497–508. doi:10.1089/ars.2008.224218717629
  • KwakMK, KenslerTW. Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol. 2010;244(1):66–76. doi:10.1016/j.taap.2009.08.02819732782
  • BouttenA, GovenD, Artaud-MacariE, BoczkowskiJ, BonayM. NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease. Trends Mol Med. 2011;17(7):363–371. doi:10.1016/j.molmed.2011.02.00621459041
  • KenslerTW, NgD, CarmellaSG, et al. Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis. 2012;33(1):101–107. doi:10.1093/carcin/bgr22922045030
  • ShureiqiI, BaronJA. Curcumin chemoprevention: the long road to clinical translation. Cancer Prev Res (Phila). 2011;4(3):296–298. doi:10.1158/1940-6207.CAPR-11-006021372027
  • LinkerRA, LeeDH, RyanS, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134(Pt 3):678–692. doi:10.1093/brain/awq38621354971
  • PergolaPE, RaskinP, TotoRD, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365(4):327–336. doi:10.1056/NEJMoa110535121699484
  • PalsamyP, SubramanianS. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta. 2011;1812(7):719–731. doi:10.1016/j.bbadis.2011.03.00821439372
  • ZhaoCR, GaoZH, QuXJ. Nrf2-ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidemiol. 2010;34(5):523–533. doi:10.1016/j.canep.2010.06.01220638930
  • HayesJD, McMahonM. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34(4):176–188. doi:10.1016/j.tibs.2008.12.00819321346
  • SpornMB, LibyKT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer. 2012;12(8):564–571. doi:10.1038/nrc327822810811
  • Dinkova-KostovaAT, HoltzclawWD, KenslerTW. The role of Keap1 in cellular protective responses. Chem Res Toxicol. 2005;18(12):1779–1791. doi:10.1021/tx050217c16359168
  • ItohK, ChibaT, TakahashiS, et al. An Nrf2/small Maf heterodimer mediates the induction of Phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–322. doi:10.1006/bbrc.1997.69439240432
  • LiuY, KernJT, WalkerJR, JohnsonJA, SchultzPG, LueschH. A genomic screen for activators of the antioxidant response element. Proc Natl Acad Sci U S A. 2007;104(12):5205–5210. doi:10.1073/pnas.070089810417360324
  • KomatsuM, KurokawaH, WaguriS, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 2010;12(3):213–223. doi:10.1038/ncb202120173742
  • LauA, WangXJ, ZhaoF, et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol. 2010;30(13):3275–3285. doi:10.1128/MCB.00248-1020421418
  • CoppleIM, ListerA, ObengAD, et al. Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem. 2010;285(22):16782–16788. doi:10.1074/jbc.M109.09654520378532
  • Garcia-CuestaC, Sarrion-PerezMG, BaganJV. Current treatment of oral candidiasis: a literature review. J Clin Exp Dent. 2014;6(5):e576–e582. doi:10.4317/jced.5179825674329
  • GotzschePC, JohansenHK. Routine versus selective antifungal administration for control of fungal infections in patients with cancer. Cochrane Database Syst Rev. 2014;9:CD000026.
  • BensadounRJ, DaoudJ, El GueddariB, et al. Comparison of the efficacy and safety of miconazole 50-mg mucoadhesive buccal tablets with miconazole 500-mg gel in the treatment of oropharyngeal candidiasis: a prospective, randomized, single-blind, multicenter, comparative, Phase III trial in patients treated with radiotherapy for head and neck cancer. Cancer. 2008;112(1):204–211. doi:10.1002/cncr.2315218044772
  • KaurR, DwivediAR, KumarB, KumarV. Recent developments on 1,2,4-triazole nucleus in anticancer compounds: a review. Anticancer Agents Med Chem. 2016;16(4):465–489. doi:10.2174/187152061566615081912110626286663
  • ShahbazfarAA, ZareP, RanjbaranM, et al. A survey on anticancer effects of artemisinin, iron, miconazole, and butyric acid on 5637 (bladder cancer) and 4T1 (Breast cancer) cell lines. J Cancer Res Ther. 2014;10(4):1057–1062. doi:10.4103/0973-1482.13797525579554
  • WuCH, JengJH, WangYJ, et al. Antitumor effects of miconazole on human colon carcinoma xenografts in nude mice through induction of apoptosis and G0/G1 cell cycle arrest. Toxicol Appl Pharmacol. 2002;180(1):22–35. doi:10.1006/taap.2002.935211922774
  • MunYJ, LeeSW, JeongHW, LeeKG, KimJH, WooWH. Inhibitory effect of miconazole on melanogenesis. Biol Pharm Bull. 2004;27(6):806–809. doi:10.1248/bpb.27.80615187422
  • WisemanH, SmithC, ArnsteinHR, HalliwellB, CannonM. The antioxidant action of ketoconazole and related azoles: comparison with tamoxifen and cholesterol. Chem Biol Interact. 1991;79(2):229–243. doi:10.1016/0009-2797(91)90085-L1884432
  • KobayashiM, YamamotoM. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal. 2005;7(3–4):385–394. doi:10.1089/ars.2005.7.38515706085
  • MilkovicL, ZarkovicN, SasoL. Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol. 2017;12:727–732. doi:10.1016/j.redox.2017.04.01328411557
  • ItohK, IshiiT, WakabayashiN, YamamotoM. Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res. 1999;31(4):319–324. doi:10.1080/1071576990030088110517536
  • ZhangDD, HanninkM. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol. 2003;23(22):8137–8151. doi:10.1128/MCB.23.22.8137-8151.200314585973
  • JiangT, HarderB, de la VegaMR, WongPK, ChapmanE, ZhangDD. p62 links autophagy and Nrf2 signaling. Free Radic Biol Med. 2015;88(Pt B):199–204. doi:10.1016/j.freeradbiomed.2015.06.01426117325
  • LeeJS, SurhYJ. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 2005;224(2):171–184. doi:10.1016/j.canlet.2004.09.04215914268
  • GiudiceA, ArraC, TurcoMC. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol Biol. 2010;647:37–74.20694660