230
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Network Pharmacology and Experimental Evidence Reveal Dioscin Suppresses Proliferation, Invasion, and EMT via AKT/GSK3b/mTOR Signaling in Lung Adenocarcinoma

, , , , , , , , & ORCID Icon show all
Pages 2135-2147 | Published online: 28 May 2020

References

  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi:10.3322/caac.2155130620402
  • SungWJ, KimH, ParkKK. The biological role of epithelial-mesenchymal transition in lung cancer (Review). Oncol Rep. 2016;36(3):1199–1206. doi:10.3892/or.2016.496427460444
  • ThompsonEW, NewgreenDF, TarinD. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res. 2005;65(14):5991–5995. doi:10.1158/0008-5472.CAN-05-061616024595
  • FengYL, ChenDQ, VaziriND, GuoY, ZhaoYY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev. 2019;40(1):54–78.31131921
  • LinY, YangZ, XuA, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5(1):8997. doi:10.1038/srep0899725757764
  • Karimi RoshanM, SoltaniA, SoleimaniA, Rezaie KahkhaieK, AfshariAR, SoukhtanlooM. Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. Biochimie. 2019;165:229–234. doi:10.1016/j.biochi.2019.08.00331401189
  • ChenH, XuL, YinL, et al. iTRAQ-based proteomic analysis of dioscin on human HCT-116 colon cancer cells. Proteomics. 2014;14(1):51–73. doi:10.1002/pmic.20130010124420967
  • ZhangG, ZengX, ZhangR, et al. Dioscin suppresses hepatocellular carcinoma tumor growth by inducing apoptosis and regulation of TP53, BAX, BCL2 and cleaved CASP3. Phytomedicine. 2016;23(12):1329–1336. doi:10.1016/j.phymed.2016.07.00327765352
  • ChenB, ZhouS, ZhanY, et al. Dioscin inhibits the invasion and migration of hepatocellular carcinoma hepG2 cells by reversing TGF-β1-induced epithelial-mesenchymal transition. Molecules. 2019;24(12):222.
  • LimWC, KimH, KimYJ, et al. Dioscin suppresses TGF-β1-induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration and invasion. Bioorg Med Chem Lett. 2017;27(15):3342–3348. doi:10.1016/j.bmcl.2017.06.01428610976
  • DavisAP, GrondinCJ, JohnsonRJ, et al. The comparative toxicogenomics database: update 2019. Nucleic Acids Res. 2019;47(D1):D948–d954. doi:10.1093/nar/gky86830247620
  • KeiserMJ, RothBL, ArmbrusterBN, ErnsbergerP, IrwinJJ, ShoichetBK. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007;25(2):197–206. doi:10.1038/nbt128417287757
  • DainaA, MichielinO, ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–w364. doi:10.1093/nar/gkz38231106366
  • SafranM, DalahI, AlexanderJ, et al. GeneCards Version 3: the human gene integrator. Database (Oxford). 2010;2010:baq020. doi:10.1093/database/baq02020689021
  • UniProtC. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–D515.30395287
  • SzklarczykD, GableAL, LyonD, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–d613. doi:10.1093/nar/gky113130476243
  • Huang daW, ShermanBT, LempickiRA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. doi:10.1093/nar/gkn92319033363
  • KimS, ChenJ, ChengT, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47(D1):D1102–d1109. doi:10.1093/nar/gky103330371825
  • BurleySK, BermanHM, BhikadiyaC, et al. RCSB protein data bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019;47(D1):D464–d474. doi:10.1093/nar/gky100430357411
  • GinnebaughKR, AhmadA, SarkarFH. The therapeutic potential of targeting the epithelial-mesenchymal transition in cancer. Exp Opin Ther Targets. 2014;18(7):731–745. doi:10.1517/14728222.2014.909807
  • Fernandez-RozadillaC, Alvarez-BaronaM, SchamschulaE, et al. Early colorectal cancers provide new evidence for a lynch syndrome-to-CMMRD phenotypic continuum. Cancers (Basel). 2019;11(8):1081. doi:10.3390/cancers11081081
  • ShaoL, LiH, ChenJ, et al. Irisin suppresses the migration, proliferation, and invasion of lung cancer cells via inhibition of epithelial-to-mesenchymal transition. Biochem Biophys Res Commun. 2017;485(3):598–605. doi:10.1016/j.bbrc.2016.12.08427986567
  • WilliamsED, GaoD, RedfernA, ThompsonEW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat. Rev. Cancer. 2019;19(12):716–732. doi:10.1038/s41568-019-0213-x31666716
  • De MatteisS, CanaleM, VerlicchiA, et al. Advances in molecular mechanisms and immunotherapy involving the immune cell-promoted epithelial-to-mesenchymal transition in lung cancer. J Oncol. 2019;2019:7475364. doi:10.1155/2019/747536431531020
  • TulchinskyE, DemidovO, KriajevskaM, BarlevNA, ImyanitovE. EMT: a mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim Biophys Acta Rev Cancer. 2019;1871(1):29–39. doi:10.1016/j.bbcan.2018.10.00330419315
  • ScanlonCS, Van TubergenEA, InglehartRC, D’SilvaNJ. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res. 2013;92(2):114–121. doi:10.1177/002203451246735223128109
  • WuYS, ChungI, WongWF, MasamuneA, SimMS, LooiCY. Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nrf2 pathway in pancreatic cancer cells. Biochim Et Biophys Acta General Sub. 2017;1861(2):296–306. doi:10.1016/j.bbagen.2016.10.006
  • HeS, LiZ, YuY, et al. Exosomal miR-499a-5p promotes cell proliferation, migration and EMT via mTOR signaling pathway in lung adenocarcinoma. Exp Cell Res. 2019;379(2):203–213. doi:10.1016/j.yexcr.2019.03.03530978341
  • LuoY, RenZ, DuB, et al. Structure identification of viceninII extracted from and the reversal of TGF-β1-Induced epithelial⁻mesenchymal transition in lung adenocarcinoma cells through TGF-β/smad and PI3K/Akt/mTOR signaling pathways. Molecules. 2019;24(1):144. doi:10.3390/molecules24010144
  • HseuY-C, LinY-C, RajendranP, et al. Antrodia salmonea suppresses invasion and metastasis in triple-negative breast cancer cells by reversing EMT through the NF-κB and Wnt/β-catenin signaling pathway. Food Chem Toxicol. 2019;124:219–230. doi:10.1016/j.fct.2018.12.00930529123
  • SongN, ZhongJ, HuQ, et al. FGF18 enhances migration and the epithelial-mesenchymal transition in breast cancer by regulating Akt/GSK3β/Β-catenin signaling. Cell Physiol Biochem. 2018;49(3):1019–1032. doi:10.1159/00049328630196303
  • ZhouBP, DengJ, XiaW, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004;6(10):931–940. doi:10.1038/ncb117315448698
  • NavéBT, OuwensM, WithersDJ, AlessiDR, ShepherdPR. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 1999;344(Pt 2):427–431. doi:10.1042/bj344042710567225
  • YooYA, KangMH, LeeHJ, et al. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res. 2011;71(22):7061–7070. doi:10.1158/0008-5472.CAN-11-133821975935
  • KwonCS, SohnHY, KimSH, et al. Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents. Biosci Biotechnol Biochem. 2003;67(7):1451–1456. doi:10.1271/bbb.67.145112913286
  • SautourM, Mitaine-OfferAC, MiyamotoT, DongmoA, Lacaille-DuboisMA. A new steroidal saponin from Dioscorea cayenensis. Chem Pharm Bull (Tokyo). 2004;52(11):1353–1355. doi:10.1248/cpb.52.135315516762
  • LiK, WangY, GuJ, ChenX, ZhongD. Determination of dioscin in rat plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;817(2):271–275. doi:10.1016/j.jchromb.2004.12.026
  • ChoJ, ChoiH, LeeJ, KimMS, SohnHY, LeeDG. The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim Biophys Acta. 2013;1828(3):1153–1158. doi:10.1016/j.bbamem.2012.12.01023262192
  • ZhaoX, CongX, ZhengL, XuL, YinL, PengJ. Dioscin, a natural steroid saponin, shows remarkable protective effect against acetaminophen-induced liver damage in vitro and in vivo. Toxicol Lett. 2012;214(1):69–80. doi:10.1016/j.toxlet.2012.08.00522939915
  • AquinoR, ContiC, De SimoneF, OrsiN, PizzaC, SteinML. Antiviral activity of constituents of Tamus communis. J Chemother. 1991;3(5):305–309. doi:10.1080/1120009X.1991.117391101667189
  • LiC, LuY, DuS, et al. Dioscin exerts protective effects against crystalline silica-induced pulmonary fibrosis in mice. Theranostics. 2017;7(17):4255–4275. doi:10.7150/thno.2027029158824
  • LeeWY, LeeCY, KimYS, KimCE. The methodological trends of traditional herbal medicine employing network pharmacology. Biomolecules. 2019;9(8):362. doi:10.3390/biom9080362
  • ZhangR, ZhuX, BaiH, NingK. Network pharmacology databases for traditional chinese medicine: review and assessment. Front Pharmacol. 2019;10:123. doi:10.3389/fphar.2019.0012330846939
  • NiehrsC. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–779. doi:10.1038/nrm347023151663