2,820
Views
33
CrossRef citations to date
0
Altmetric
Review

Film-Forming Sprays for Topical Drug Delivery

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 2909-2925 | Published online: 22 Jul 2020

References

  • ZorecB, MiklavčičD, PavšeljN, PréatV. Active enhancement methods for intra- and transdermal drug delivery: a review. Zdr Vestn. 2013;82(5):339–356.
  • CristianoMC, CilurzoF, CarafaM, PaolinoD. Innovative vesicles for dermal and transdermal drug delivery In: Lipid Nanocarriers for Drug Targeting. Elsevier; 2018:175–197. doi:10.1016/B978-0-12-813687-4.00004-9
  • SharadhaM, GowdaDV, Vishal GuptaN, AkhilaAR. An overview on topical drug delivery system – updated review. Int J Res Pharm Sci. 2020;11(1):368–385. doi:10.26452/ijrps.v11i1.1831
  • KaurJ, KaurJ, JaiswalS, GuptaG. Recent advances in topical drug delivery system. Pharm Res. 2016;6(7).
  • LeppertW, Malec–MilewskaM, ZajaczkowskaR, WordliczekJ. Transdermal and topical drug administration in the treatment of pain. Molecules. 2018;23(3):681. doi:10.3390/molecules23030681
  • DayanN. Delivery system design in topically applied formulations: an overview In: Delivery System Handbook for Personal Care and Cosmetic Products. Elsevier; 2005:101–118. doi:10.1016/B978-081551504-3.50009-2
  • RuelaALM, PerissinatoAG. Evaluation of skin absorption of drugs from topical and transdermal formulations. Brazilian J Pharm Sci. 2016;52(3):527–544. doi:10.1590/s1984-82502016000300018
  • GargT, RathG, GoyalAK. Comprehensive review on additives of topical dosage forms for drug delivery. Drug Deliv. 2015;22(8):969–987. doi:10.3109/10717544.2013.87935524456019
  • ChangR-K, RawA, LionbergerR, YuL. Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J. 2013;15(1):41–52. doi:10.1208/s12248-012-9411-023054971
  • RadhakrishnanA, KuppusamyG, KarriVVSR. Spray bandage strategy in topical drug delivery. J Drug Deliv Sci Technol. 2018;43:113–121. doi:10.1016/j.jddst.2017.09.018
  • IbrahimSA. Spray-on transdermal drug delivery systems. Expert Opin Drug Deliv. 2015;12(2):195–205. doi:10.1517/17425247.2015.96141925227233
  • Algin-YaparE, ÖnalÖ. Transdermal spray in hormone delivery. Trop J Pharm Res. 2014;13(3):469–474. doi:10.4314/tjpr.v13i3.23
  • VariankavalNE, JacobKI, DinhSM. Crystallization of ?-estradiol in an acrylic transdermal drug delivery system. J Biomed Mater Res. 1999;44(4):397–406. doi:10.1002/(SICI)1097-4636(19990315)44:4<397::AID-JBM5>3.0.CO;2-Q10397943
  • MandalUK, ChatterjeeB, HusnaF, PauziB. A review on transdermal spray: formulation aspect mathews journal of pharmaceutical science a review on transdermal spray: formulation aspect. Mathews J Pharm Sci. 2016;1(March):006.
  • ChavanP, BajajA, ParabA. Topical sprays: novel drug delivery system. Int J Pharm Chem Res. 2016;2(2):102–111.
  • ParmarK, PatelMB. A review on sublingual spray: novel drug delivery system. Int J Pharm Sci Res. 2017;8(11):4533–4539. doi:10.13040/IJPSR.0975-8232.8(11).4533-39
  • AravindhanthanV, AnjaliPB, RadhakrishnanA. Sublingual spray: a new technology oriented formulation with multiple benefits. Int J Res Pharm Sci. 2019;10(4):2875–2885. doi:10.26452/ijrps.v10i4.1567
  • Algin-YaparE, InalÖ. Transdermal spray in hormone delivery. Trop J Pharm Res. 2014;13(3):469. doi:10.4314/tjpr.v13i3.23
  • Kumar MandalU, ChatterjeeB, HusnaF, PauziB. A review on transdermal spray: formulation aspect. Rev Transdermal Spray Formul Asp M J Pharma. 2016;1(1):6.
  • RanadeS, BajajA, LondheV, BabulN, KaoD. Fabrication of topical metered dose film forming sprays for pain management. Eur J Pharm Sci. 2017;100:132–141. doi:10.1016/j.ejps.2017.01.00428069427
  • KatheK, KathpaliaH. Film forming systems for topical and transdermal drug delivery. Asian J Pharm Sci. 2017;12(6):487–497. doi:10.1016/j.ajps.2017.07.00432104362
  • FrederiksenK, GuyRH, PeterssonK. The potential of polymeric film-forming systems as sustained delivery platforms for topical drugs. Expert Opin Drug Deliv. 2016;13(3):349–360. doi:10.1517/17425247.2016.112441226609868
  • KimDS, KimJS, LeeMC. Thin film forming technique based on hybrid spray coating using electrostatic force and air pressure. Jpn J Appl Phys. 2014;53(5S3):05HC08. doi:10.7567/JJAP.53.05HC08
  • UrkanE, GulerH, KomekciF. A review of electrostatic spraying for agricultural applications. Tarim Makinalari Bilim Derg. 2016;12(4):229–233.
  • ZhuangC, ZhongY, ZhaoY. Effect of deacetylation degree on properties of Chitosan films using electrostatic spraying technique. Food Control. 2019;97:25–31. doi:10.1016/j.foodcont.2018.10.014
  • ZhongY, ZhuangC, GuW, ZhaoY. Effect of molecular weight on the properties of chitosan films prepared using electrostatic spraying technique. Carbohydr Polym. 2019;212(May2018):197–205. doi:10.1016/j.carbpol.2019.02.04830832847
  • TranTTD, TranPHL. Controlled release film forming systems in drug delivery: the potential for efficient drug delivery. Pharmaceutics. 2019;11(6):290. doi:10.3390/pharmaceutics11060290
  • BaioFHR, AntuniassiUR, CastilhoBR, TeodoroPE, SilvaEE. Correction: factors affecting aerial spray drift in the Brazilian Cerrado. PLoS One. 2019;14(6):e0217957. doi:10.1371/journal.pone.021795731163083
  • GaytanI, NicolasB, GouriouF, LeruJP, MallarachJ. Effect of working pressure, fluid temperature, nozzle type and nozzle orifice size, on spray characteristics using viscous feed additive DL-2-hydroxy-4-(methylthio)-butanoic-acid. Powder Technol. 2018;336(2017):383–392. doi:10.1016/j.powtec.2018.05.045
  • BakshiA, BajajA, MalhotraG, MadanM, AmrutiyaN. A novel metered dose transdermal spray formulation for oxybutynin. Indian J Pharm Sci. 2008;70(6):733–739. doi:10.4103/0250-474X.4909421369433
  • GehKJ, StelzlA, GröneA, WagnerL, FörsterB, WinterG. Development of a sprayable hydrogel formulation for the skin application of therapeutic antibodies. Eur J Pharm Biopharm. 2019;142(November2018):123–132. doi:10.1016/j.ejpb.2019.06.01531207297
  • LuW, LuoH, WuY, ZhuZ, WangH. Preparation and characterization of a metered dose transdermal spray for testosterone. Acta Pharm Sin B. 2013;3(6):392–399. doi:10.1016/j.apsb.2013.10.003
  • LuW, LuoH, ZhuZ, WuY, LuoJ, WangH. Preparation and the biopharmaceutical evaluation for the metered dose transdermal spray of dexketoprofen. J Drug Deliv. 2014;2014:1–12. doi:10.1155/2014/697434
  • ParadkarM, ThakkarV, SoniT, GandhiT, GohelM. Formulation and evaluation of clotrimazole transdermal spray. Drug Dev Ind Pharm. 2015;41(10):1718–1725. doi:10.3109/03639045.2014.100240825579237
  • TanX, FeldmanSR, ChangJ, BalkrishnanR. Topical drug delivery systems in dermatology: a review of patient adherence issues. Expert Opin Drug Deliv. 2012;9(10):1263–1271. doi:10.1517/17425247.2012.71175622861153
  • DevauxS, CastelaA, ArchierE, et al. Adherence to topical treatment in psoriasis: a systematic literature review. J Eur Acad Dermatology Venereol. 2012;26:61–67. doi:10.1111/j.1468-3083.2012.04525.x
  • DhimanS, SinghTG, RehniAK. Transdermal patches: a recent approch to new drug delivery system. Int J Pharm Pharm Sci. 2011;3(SUPPL. 5):26–34.
  • OkanD, WooK, AyelloEA, SibbaldG. The role of moisture balance in wound healing. Adv Skin Wound Care. 2007;20(1):39–53. doi:10.1097/00129334-200701000-0001317195786
  • BishopSM, WalkerM, RogersAA, ChenWYJ. Importance of moisture balance at the wound-dressing interface. J Wound Care. 2003;12(4):125–128. doi:10.12968/jowc.2003.12.4.2648412715483
  • GohelMC, NagoriSA. Fabrication of modified transport fluconazole transdermal spray containing ethyl cellulose and eudragit® RS100 as film formers. AAPS PharmSciTech. 2009;10(2):684–691. doi:10.1208/s12249-009-9256-819462250
  • MoriNM, PatelP, ShethNR, RathodLV, AsharaKC. Fabrication and characterization of film-forming voriconazole transdermal spray for the treatment of fungal infection. Bull Fac Pharmacy Cairo Univ. 2017;55(1):41–51. doi:10.1016/j.bfopcu.2017.01.001
  • RajabNA. Preparation and evaluation of ketoprofen as dermal spray film. Kerbala J Pharm Sci. 2013;6:1–8.
  • SaingamW, ChankanaN, MadakaF, SuereeL, HomchuamS. Formulation development of topical film formimg spray from Piper nigrum L. Thai J Pharm Sci. 2018;42(supplement):93–97. doi:10.1134/S0965545X11100087
  • SukhbirK, NavneetK, SharmaAK, KapilK. Development of modified transdermal spray formulation of psoralen extract. Der Pharm Lett. 2013;5(2):85–94.
  • HakimM, WaliaH, RafiqM, GrannellT, CartabukeRS, TobiasJD. Oxymetazoline metered dose spray: factors affecting delivery volume. J Pediatr Pharmacol Ther. 2016;21(3):247–251. doi:10.5863/1551-6776-21.3.24727453703
  • RuY, GanY, ZhengJ, ZhouH. Design and experiments on droplet charging device for high-range electrostatic sprayer. Am Soc Agric Biol Eng Annu Int Meet 2008. 2008;1:561–571. doi:10.5772/18546
  • BarringerSA, SumonsiriN. Electrostatic coating technologies for food processing. Annu Rev Food Sci Technol. 2015;6(1):157–169. doi:10.1146/annurev-food-022814-01552625648420
  • Abu-AliJ, BarringerSA. Method for electrostatic atomization of emulsions in an EHD system. J Electrostat. 2005;63(5):361–369. doi:10.1016/j.elstat.2004.11.004
  • KwonS-I, KyungK-H, ParkJ-Y, et al. Uniform anti-reflective films fabricated by layer-by-layer ultrasonic spray method. Colloids Surf a Physicochem Eng Asp. 2019;580((August):123785):123785. doi:10.1016/j.colsurfa.2019.123785
  • OhDW, KangJH, LeeHJ, et al. Formulation and in vitro/in vivo evaluation of chitosan-based film forming gel containing ketoprofen. Drug Deliv. 2017;24(1):1056–1066. doi:10.1080/10717544.2017.134600128687046
  • ZarrintajP, JouyandehM, GanjaliMR, et al. Thermo-sensitive polymers in medicine: a review. Eur Polym J. 2019;117:402–423. doi:10.1016/j.eurpolymj.2019.05.024
  • KimY-J, MatsunagaYT. Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B. 2017;5(23):4307–4321. doi:10.1039/C7TB00157F32263961
  • JunL, BochuW, YazhouW. Thermo-sensitive polymers for controlled-release drug delivery systems. Int J Pharmacol. 2006;2(5):513–519. doi:10.3923/ijp.2006.513.519
  • Licea-ClaverieA, SchwarzS, SteinbachC, Montserrat Ponce-VargasS, GenestS. Combination of natural and thermosensitive polymers in flocculation of fine silica dispersions. Int J Carbohydr Chem. 2013;2013:1–8. doi:10.1155/2013/242684
  • ShaoP, WangB, WangY, LiJ, ZhangY. The application of thermosensitive nanocarriers in controlled drug delivery. J Nanomater. 2011;2011:1–12. doi:10.1155/2011/38964021808638
  • Sánchez-MorenoP, de VicenteJ, NardecchiaS, MarchalJ, BoulaizH. Thermo-sensitive nanomaterials: recent advance in synthesis and biomedical applications. Nanomaterials. 2018;8(11):935. doi:10.3390/nano8110935
  • KocakG, TuncerC, BütünV. pH-Responsive polymers. Polym Chem. 2017;8(1):144–176. doi:10.1039/C6PY01872F
  • MutalabisinMF, ChatterjeeB, JaffriJM. PH responsive polymers in drug delivery. Res J Pharm Technol. 2018;11(11):5115. doi:10.5958/0974-360X.2018.00934.4
  • Reyes-OrtegaF. pH-responsive polymers: properties, synthesis and applications In: Smart Polymers and Their Applications. Elsevier; 2014:45–92. doi:10.1533/9780857097026.1.45
  • RizwanM, YahyaR, HassanA, et al. pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers (Basel). 2017;9(12):137. doi:10.3390/polym9040137
  • YoshidaT, LaiTC, KwonGS, SakoK. pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv. 2013;10(11):1497–1513. doi:10.1517/17425247.2013.82197823930949
  • Al-AnaziHA, SharmaMM. Use of a pH sensitive polymer for conformance control In: International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers; 2002. doi:10.2118/73782-MS
  • GrandeAM, MartinR, OdriozolaI, van der ZwaagS, GarciaSJ. Effect of the polymer structure on the viscoelastic and interfacial healing behaviour of poly(urea-urethane) networks containing aromatic disulphides. Eur Polym J. 2017;97:120–128. doi:10.1016/j.eurpolymj.2017.10.007
  • GayleAJ, CookRF. Mapping viscoelastic and plastic properties of polymers and polymer-nanotube composites using instrumented indentation. J Mater Res. 2016;31(15):2347–2360. doi:10.1557/jmr.2016.20727563168
  • MohamedF, FlämigM, HofmannM, et al. Scaling analysis of the viscoelastic response of linear polymers. J Chem Phys. 2018;149(4):44902. doi:10.1063/1.5038643
  • MengR, YinD, DrapacaCS. A variable order fractional constitutive model of the viscoelastic behavior of polymers. Int J Non Linear Mech. 2019;113:171–177. doi:10.1016/j.ijnonlinmec.2019.04.002
  • YuC, KangG, LuF, ZhuY, ChenK. Viscoelastic–viscoplastic cyclic deformation of polycarbonate polymer: experiment and constitutive model. J Appl Mech. 2016;83(4). doi:10.1115/1.4032374
  • LeichtnamM-L, RollandH, WüthrichP, GuyRH. Impact of antinucleants on transdermal delivery of testosterone from a spray. J Pharm Sci. 2007;96(1):84–92. doi:10.1002/jps.2067016998787
  • Ter HorstB, MoakesRJA, ChouhanG, WilliamsRL, MoiemenNS, GroverLM. A gellan-based fluid gel carrier to enhance topical spray delivery. Acta Biomater. 2019;89:166–179. doi:10.1016/j.actbio.2019.03.03630904549
  • MahdiMH, ConwayBR, SmithAM. Development of mucoadhesive sprayable gellan gum fluid gels. Int J Pharm. 2015;488(1–2):12–19. doi:10.1016/j.ijpharm.2015.04.01125863119
  • WangS, HeX, SongJ, WangS, JiaX, LingY. Effects of xanthan gum on atomization and deposition characteristics in water and Silwet 408 aqueous solution. Int J Agric Biol Eng. 2018;11(3):29–34. doi:10.25165/j.ijabe.20181103.3802
  • KahyaN. Water soluble chitosan derivatives and their biological activities: a review. Polym Sci. 2018; 4(2):1–11. DOI:10.4172/2471-9935.100043
  • QunG, AjunW. Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution. Carbohydr Polym. 2006;64(1):29–36. doi:10.1016/j.carbpol.2005.10.026
  • ZhongY, LiY. Effects of surfactants on the functional and structural properties of kudzu (Pueraria lobata) starch/ascorbic acid films. Carbohydr Polym. 2011;85(3):622–628. doi:10.1016/j.carbpol.2011.03.031
  • Sriwidodo, SubrotoT, MaksumIP, SubarnasA, et al. Preparation and optimization of chitosan-hegf nanoparticle using ionic gelation method stabilized by polyethylene glycol (PEG) for wound healing therapy. Int J Res Pharm Sci. 2020;11(1):1220–1230. doi:10.26452/ijrps.v11i1.1962
  • JugM, Bećirević-LaćanM, BengezS. Novel cyclodextrin-based film formulation intended for buccal delivery of atenolol. Drug Dev Ind Pharm. 2009;35(7):796–807. doi:10.1080/0363904080259621219259876
  • MoralesME, RuizMA. Microencapsulation of probiotic cells: applications in nutraceutic and food industry In: Nutraceuticals. Elsevier; 2016:627–668. doi:10.1016/B978-0-12-804305-9.00016-6
  • BradbeerJF, HancocksR, SpyropoulosF, NortonIT. Self-structuring foods based on acid-sensitive low and high acyl mixed gellan systems to impact on satiety. Food Hydrocoll. 2014;35:522–530. doi:10.1016/j.foodhyd.2013.07.01424882914
  • GripJ, EngstadRE, SkjævelandI, Škalko-BasnetN, HolsæterAM. Sprayable Carbopol hydrogel with soluble beta-1,3/1,6-glucan as an active ingredient for wound healing – development and in-vivo evaluation. Eur J Pharm Sci. 2017;107(April):24–31. doi:10.1016/j.ejps.2017.06.02928645493
  • EdwardsA, QiS, LiuF, BrownMB, McAuleyWJ. Rationalising polymer selection for supersaturated film forming systems produced by an aerosol spray for the transdermal delivery of methylphenidate. Eur J Pharm Biopharm. 2017;114:164–174. doi:10.1016/j.ejpb.2017.01.01328159724
  • GohliT, ShahP. Formulation and development of transdermal spray of ibandronate sodium. 2019;1.
  • ReidML, BenaoudaF, KhengarR, JonesSA, BrownMB. Topical corticosteroid delivery into human skin using hydrofluoroalkane metered dose aerosol sprays. Int J Pharm. 2013;452(1–2):157–165. doi:10.1016/j.ijpharm.2013.04.08323684656
  • VargesPR, CostaCM, FonsecaBS, NaccacheMF, MendesPRDS. Rheological characterization of carbopol® dispersions in water and in water/glycerol solutions. Fluids. 2019;4(3):1–20. doi:10.3390/fluids4010003
  • JonesA, VaughanD. Hydrogel dressings in the management of a variety of wound types: a review. J Orthop Nurs. 2005;9:S1–S11. doi:10.1016/S1361-3111(05)80001-9
  • PatraCN, PriyaR, SwainS, Kumar JenaG, PanigrahiKC, GhoseD. Pharmaceutical significance of Eudragit: a review. Futur J Pharm Sci. 2017;3(1):33–45. doi:10.1016/j.fjps.2017.02.001
  • NandyB, MazumderB. Formulation and characterizations of delayed release multi-particulates system of indomethacin: optimization by response surface methodology. Curr Drug Deliv. 2014;11(1):72–86. doi:10.2174/1567201811310999004124783236
  • HasanovicA, HollickC, FischingerK, ValentaC. Improvement in physicochemical parameters of DPPC liposomes and increase in skin permeation of aciclovir and minoxidil by the addition of cationic polymers. Eur J Pharm Biopharm. 2010;75(2):148–153. doi:10.1016/j.ejpb.2010.03.01420332029
  • RaghavanS, TrividicA, DavisA, HadgraftJ. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212(2):213–221. doi:10.1016/S0378-5173(00)00610-411165079
  • PellettMA, RobertsMS, HadgraftJ. Supersaturated solutions evaluated with an in vitro stratum corneum tape stripping technique. Int J Pharm. 1997;151(1):91–98. doi:10.1016/S0378-5173(97)04897-7
  • JagtapPS, TagadRR, ShendgeRS. A brief review on Kollidon. J Drug Deliv Ther. 2019;9(2):493–500. doi:10.22270/jddt.v9i2.2539
  • MaitraJ, ShuklaVK. Cross-linking in hydrogels - a review. Am J Polym Sci. 2014;4(2):25–31. doi:10.5923/j.ajps.20140402.01
  • KahnM. Bioavailability of vitamin B12 using a small-volume nebulizer ophthalmic drug delivery system. Clin Exp Ophthalmol. 2005;33(4):402–407. doi:10.1111/j.1442-9071.2005.01030.x16033354
  • HoH-O, ChenL-C, LinH-M, SheuM-T. Penetration enhancement by menthol combined with a solubilization effect in a mixed solvent system. J Control Release. 1998;51(2–3):301–311. doi:10.1016/S0168-3659(97)00184-39685928
  • AqilM, AhadA, SultanaY, AliA. Status of terpenes as skin penetration enhancers. Drug Discov Today. 2007;12(23–24):1061–1067. doi:10.1016/j.drudis.2007.09.00118061886
  • RheeY-S, ChoiJ-G, ParkE-S, ChiS-C. Transdermal delivery of ketoprofen using microemulsions. Int J Pharm. 2001;228(1–2):161–170. doi:10.1016/S0378-5173(01)00827-411576778
  • TrommerH, NeubertRHH. Overcoming the Stratum Corneum: the Modulation of Skin Penetration. Skin Pharmacol Physiol. 2006;19(2):106–121. doi:10.1159/00009197816685150
  • HaqueT, TalukderMMU. Chemical enhancer: a simplistic way to modulate barrier function of the stratum corneum. Adv Pharm Bull. 2018;8(2):169–179. doi:10.15171/apb.2018.02130023318
  • TrottetL, MerlyC, MirzaM, HadgraftJ, DavisA. Effect of finite doses of propylene glycol on enhancement of in vitro percutaneous permeation of loperamide hydrochloride. Int J Pharm. 2004;274(1–2):213–219. doi:10.1016/j.ijpharm.2004.01.01315072797
  • LeichtnamM-L, RollandH, WüthrichP, GuyRH. Formulation and evaluation of a testosterone transdermal spray. J Pharm Sci. 2006;95(8):1693–1702. doi:10.1002/jps.2064116795012
  • SuyatamaNE, TighzertL, CopinetA. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J Agric Food Chem. 2005;53(10):3950–3957.15884822
  • VervaetC, ByronPR. Drug–surfactant–propellant interactions in HFA-formulations. Int J Pharm. 1999;186(1):13–30. doi:10.1016/S0378-5173(99)00134-910469920
  • AliS, YosipovitchG. Skin pH: from basic science to basic skin care. Acta Derm Venereol. 2013;93(3):261–267. doi:10.2340/00015555-153123322028
  • McardleC, LaganK, SpenceS, McdowellD. Diabetic foot ulcer wound fluid: the effects of pH on DFU bacteria and infection. J foot ankle res. 2015;8(Suppl 1):1–2. doi:10.1186/1757-1146-8-S1-A825653717
  • SharpeJR, BoothS, JubinK, JordanNR, Lawrence-WattDJ, DheansaBS. Progression of wound pH during the course of healing in burns. J Burn Care Res. 2013;34(3):e201–e208. doi:10.1097/BCR.0b013e31825d556923128128
  • VávrováK, LorencováK, KlimentováJ, NovotnýJ, HolýA, HrabálekA. Transdermal and dermal delivery of adefovir: effects of pH and permeation enhancers. Eur J Pharm Biopharm. 2008;69(2):597–604. doi:10.1016/j.ejpb.2007.12.00518248973
  • WoodallR, ArnoldJJ, McKayD, AsbillCS. Effect of formulation pH on transdermal penetration of antiemetics formulated in poloxamer lecithin organogel. Int J Pharm Compd. 2013;17(3):247–253.24046940
  • PenningtonAK, RatcliffeJH, WilsonCG, HardyJG. The influence of solution viscosity on nasal spray deposition and clearance. Int J Pharm. 1988;43(3):221–224. doi:10.1016/0378-5173(88)90277-3
  • TrowsS, WuchnerK, SpycherR, SteckelH. Analytical challenges and regulatory requirements for nasal drug products in Europe and the U.S. Pharmaceutics. 2014;6(2):195–219. doi:10.3390/pharmaceutics602019524732068
  • LiuX, DoubWH, GuoC. Assessment of the Influence factors on nasal spray droplet velocity using phase-doppler anemometry (PDA). AAPS PharmSciTech. 2011;12(1):337–343. doi:10.1208/s12249-011-9594-121286880
  • UmarA, WathoniN, HasanahA, KurniawansyahI, AbdassahM. Kahar method: a novel calculation method of tonicity adjustment. J Pharm Bioallied Sci. 2019;11(8):635. doi:10.4103/jpbs.JPBS_210_19
  • OvarlezG. Introduction to the rheometry of complex suspensions In: Understanding the Rheology of Concrete. Elsevier; 2012:23–62. doi:10.1533/9780857095282.1.23
  • LochheadRY. The Use of Polymers in Cosmetic Products In: Cosmetic Science and Technology. Elsevier; 2017:171–221. doi:10.1016/B978-0-12-802005-0.00013-6
  • LeeCH, MoturiV, LeeY. Thixotropic property in pharmaceutical formulations. J Control Release. 2009;136(2):88–98. doi:10.1016/j.jconrel.2009.02.01319250955
  • RasoolB, AzizU, SarheedO, RasoolA. Design and evaluation of a bioadhesive film for transdermal delivery of propranolol hydrochloride. Acta Pharm. 2011;61(3):271–282. doi:10.2478/v10007-011-0025-321945906
  • NnamaniPO, KenechukwuFC, DibuaEU, et al. Formulation, characterization and ex-vivo permeation studies on gentamicin-loaded transdermal patches based on PURASORB® polymers. 2013;8(22):973–982. doi:10.5897/SRE2013.5379
  • KenechukwuFC, AttamaAA, IbezimEC, et al. Surface-modified mucoadhesive microgels as a controlled release system for miconazole nitrate to improve localized treatment of vulvovaginal candidiasis. Eur J Pharm Sci. 2018;111:358–375. doi:10.1016/j.ejps.2017.10.00228986195
  • StevensES, PoliksMD. Tensile strength measurements on biopolymer films. J Chem Educ. 2003;80(7):810. doi:10.1021/ed080p810
  • Zurdo SchroederI, FrankeP, SchaeferUF, LehrC-M. Development and characterization of film forming polymeric solutions for skin drug delivery. Eur J Pharm Biopharm. 2007;65(1):111–121. doi:10.1016/j.ejpb.2006.07.01516950609
  • BoatengJS, MatthewsKH, StevensHNE, EcclestonGM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–2923. doi:10.1002/jps.2121017963217
  • ThomasS, HayP. Fluid handling properties of hydrogel dressings. Ostomy Wound Manage. 1995;41(3):54–56, 58–59.
  • ThomasS, HayNP. Assessing the hydro-affinity of hydrogel dressings. J Wound Care. 1994;3(2):89–91. doi:10.12968/jowc.1994.3.2.8927922407
  • KoupilJ, BrychtaP, HorkýD, SmolaJ, PrásekJ. The influence of moisture wound healing on the incidence of bacterial infection and histological changes in healthy human skin after treatment of interactive dressings. Acta Chir Plast. 2003;45(3):89–94.14733252
  • Patricia MirandaS, GarnicaO, Lara-SagahonV, CárdenasG. Water vapor permeability and mechanical properties of chitosan films. J Chil Chem Soc. 2004;49(2):2. doi:10.4067/S0717-97072004000200013
  • HuY, TopolkaraevV, HiltnerA, BaerE. Measurement of water vapor transmission rate in highly permeable films. J Appl Polym Sci. 2001;81(7):1624–1633. doi:10.1002/app.1593.abs
  • OfokansiKC, KenechukwuFC, OgwuNN. Design of novel miconazole nitrate transdermal films based on Eudragit RS100 and HPMC hybrids: preparation, physical characterization, in vitro and ex vivo studies. Drug Deliv. 2015;22(8):1078–1085. doi:10.3109/10717544.2013.87560424455998
  • NnamaniO. Characterization and controlled release of gentamicin from novel hydrogels based on Poloxamer 407 and polyacrylic acids. Afr J Pharm Pharmacol. 2013;7(36):2540–2552. doi:10.5897/AJPP2013.3803
  • JoshiM. Role of Eudragit in targeted drug delivery. Int J Curr Pharm Res. 2013;5(2):58–62.
  • PereiraGG, GuterresSS, BalducciAG, ColomboP, SonvicoF. Polymeric films loaded with vitamin e and aloe vera for topical application in the treatment of burn wounds. Biomed Res Int. 2014;2014:1–9. doi:10.1155/2014/641590
  • SathaliAAH, RajalakshmiG. Evaluation of transdermal targeted niosomal drug delivery of terbinafine hydrochloride. Int J PharmTech Res. 2010;2(3):2081–2089.
  • NnamaniPO, KenechukwuFC, DibuaEU, OgbonnaCC, MonemehUL, AttamaAA. Transdermal microgels of gentamicin. Eur J Pharm Biopharm. 2013;84(2):345–354. doi:10.1016/j.ejpb.2012.11.01523220381
  • TurabeeMH, JeongTH, RamalingamP, KangJH, KoYT. N,N,N-trimethyl chitosan embedded in situ Pluronic F127 hydrogel for the treatment of brain tumor. Carbohydr Polym. 2019;203:302–309. doi:10.1016/j.carbpol.2018.09.06530318217
  • HanX, MengX, WuZ, WuZ, QiX. Dynamic imine bond cross-linked self-healing thermosensitive hydrogels for sustained anticancer therapy via intratumoral injection. Mater Sci Eng C. 2018;93:1064–1072. doi:10.1016/j.msec.2018.08.064
  • QiX, QinX, YangR, et al. Intra-articular administration of chitosan thermosensitive in situ hydrogels combined with diclofenac sodium–loaded alginate microspheres. J Pharm Sci. 2016;105(1):122–130. doi:10.1016/j.xphs.2015.11.01926852847
  • ZhangD, SunP, LiP, et al. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette–Guérin in the treatment of bladder cancer. Biomaterials. 2013;34(38):10258–10266. doi:10.1016/j.biomaterials.2013.09.02724070571
  • KimAR, LeeSL, ParkSN. Properties and in vitro drug release of pH- and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. Int J Biol Macromol. 2018;118:731–740. doi:10.1016/j.ijbiomac.2018.06.06129940230
  • FathiM, Alami-MilaniM, GeranmayehMH, BararJ, Erfan-NiyaH, OmidiY. Dual thermo-and pH-sensitive injectable hydrogels of chitosan/(poly(N-isopropylacrylamide-co-itaconic acid)) for doxorubicin delivery in breast cancer. Int J Biol Macromol. 2019;128:957–964. doi:10.1016/j.ijbiomac.2019.01.12230685304
  • SongK, LiL, YanX, et al. Characterization of human adipose tissue-derived stem cells in vitro culture and in vivo differentiation in a temperature-sensitive chitosan/β- glycerophosphate/collagen hybrid hydrogel. Mater Sci Eng C. 2017;70:231–240. doi:10.1016/j.msec.2016.08.085
  • NiranjanR, KoushikC, SaravananS, MoorthiA, VairamaniM, SelvamuruganN. A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol. 2013;54:24–29. doi:10.1016/j.ijbiomac.2012.11.02623201776
  • NiuY, ChenKC, HeT, YuW, HuangS, XuK. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials. 2014;35(14):4266–4277. doi:10.1016/j.biomaterials.2014.02.01324582378
  • OsmanA, OnerET, ErogluMS. Novel levan and pNIPA temperature sensitive hydrogels for 5-ASA controlled release. Carbohydr Polym. 2017;165:61–70. doi:10.1016/j.carbpol.2017.01.09728363576
  • LeiZ, SinghG, MinZ, et al. Bone marrow-derived mesenchymal stem cells laden novel thermo-sensitive hydrogel for the management of severe skin wound healing. Mater Sci Eng C. 2018;90:159–167. doi:10.1016/j.msec.2018.04.045
  • TangB, ShanJ, YuanT, et al. Hydroxypropylcellulose enhanced high viscosity endoscopic mucosal dissection intraoperative chitosan thermosensitive hydrogel. Carbohydr Polym. 2019;209:198–206. doi:10.1016/j.carbpol.2018.12.10330732799
  • PaulA, HasanA, KindiHA, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014;8(8):8050–8062. doi:10.1021/nn502078724988275
  • PrabaharanM. Bioactivity of Chitosan Derivative In: Polysaccharides. Cham: Springer International Publishing;2014:1–14. doi:10.1007/978-3-319-03751-6_17-1
  • LarocheC, DelattreC, Mati-BaoucheN, et al. Bioactivity of chitosan and its derivatives. Curr Org Chem. 2018;22(7):641–667. doi:10.2174/1385272821666170811114145
  • XiaW, LiuP, ZhangJ, ChenJ. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 2011;25(2):170–179. doi:10.1016/j.foodhyd.2010.03.003
  • KimS. Competitive biological activities of chitosan and its derivatives: antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci. 2018;2018:1–13. doi:10.1155/2018/1708172