230
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Functional Measurement of CYP2C9 and CYP3A4 Allelic Polymorphism on Sildenafil Metabolism

, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 5129-5141 | Published online: 24 Nov 2020

References

  • EardleyI, EllisP, BoolellM, WulffM. Onset and duration of action of sildenafil for the treatment of erectile dysfunction. Br J Clin Pharmacol. 2002;53(Suppl 1\(Suppl 1)):61s–65s. doi:10.1046/j.0306-5251.2001.00034.x11879261
  • FrancisSH, CorbinJD. Sildenafil: efficacy, safety, tolerability and mechanism of action in treating erectile dysfunction. Expert Opin Drug Metab Toxicol. 2005;1(2):283–293. doi:10.1517/17425255.1.2.28316922643
  • LeiblumSR. After sildenafil: bridging the gap between pharmacologic treatment and satisfying sexual relationships. J Clin Psychiatry. 2002;63(Suppl 5):17–22; discussion 23–15.
  • FazanR Jr, HuberDA, SilvaCAA, Dias da SilvaVJ, SalgadoMCO, SalgadoHC. Sildenafil acts on the central nervous system increasing sympathetic activity. J Appl Physiol. 2008;104(6):1683–1689. doi:10.1152/japplphysiol.01142.200718388248
  • BocchiEA, GuimarãesG, MocelinA, BacalF, BellottiG, RamiresJF. Sildenafil effects on exercise, neurohormonal activation, and erectile dysfunction in congestive heart failure: a double-blind, placebo-controlled, randomized study followed by a prospective treatment for erectile dysfunction. Circulation. 2002;106(9):1097–1103. doi:10.1161/01.CIR.0000027149.83473.B612196335
  • GalièN, GhofraniHA, TorbickiA, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353(20):2148–2157. doi:10.1056/NEJMoa05001016291984
  • WalkerDK, AcklandMJ, JamesGC, et al. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica. 1999;29(3):297–310. doi:10.1080/00498259923868710219969
  • HylandR, RoeEG, JonesBC, SmithDA. Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br J Clin Pharmacol. 2001;51(3):239–248. doi:10.1046/j.1365-2125.2001.00318.x11298070
  • ZangerUM, SchwabM. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141. doi:10.1016/j.pharmthera.2012.12.00723333322
  • Van BoovenD, MarshS, McLeodH, et al. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics. 2010;20(4):277–281.20150829
  • SchwarzUI. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Invest. 2003;33(Suppl 2):23–30. doi:10.1046/j.1365-2362.33.s2.6.x14641553
  • ZhouSF, ZhouZW, HuangM. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology. 2010;278(2):165–188. doi:10.1016/j.tox.2009.08.01319715737
  • WangB, WangJ, HuangSQ, SuHH, ZhouSF. Genetic polymorphism of the human cytochrome P450 2C9 gene and its clinical significance. Curr Drug Metab. 2009;10(7):781–834. doi:10.2174/13892000978989548019925388
  • IidaI, MiyataA, AraiM, et al. Catalytic roles of CYP2C9 and its variants (CYP2C9*2 and CYP2C9*3) in lornoxicam 5ʹ-hydroxylation. Drug Metab Dispos. 2004;32(1):7–9. doi:10.1124/dmd.32.1.714709614
  • LeeCR. CYP2C9 genotype as a predictor of drug disposition in humans. Methods Find Exp Clin Pharmacol. 2004;26(6):463–472.15349140
  • Sullivan-KloseTH, GhanayemBI, BellDA, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics. 1996;6(4):341–349. doi:10.1097/00008571-199608000-000078873220
  • GotohO. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem. 1992;267(1):83–90.1730627
  • CrespiCL, MillerVP. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH: cytochromeP450 oxidoreductase. Pharmacogenetics. 1997;7(3):203–210. doi:10.1097/00008571-199706000-000059241660
  • WeiL, LocusonCW, TracyTS. Polymorphic variants of CYP2C9: mechanisms involved in reduced catalytic activity. Mol Pharmacol. 2007;72(5):1280–1288. doi:10.1124/mol.107.03617817686967
  • HoPC, AbbottFS, ZangerUM, ChangTK. Influence of CYP2C9 genotypes on the formation of a hepatotoxic metabolite of valproic acid in human liver microsomes. Pharmacogenomics J. 2003;3(6):335–342. doi:10.1038/sj.tpj.650021014597963
  • HungCC, LinCJ, ChenCC, ChangCJ, LiouHH. Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther Drug Monit. 2004;26(5):534–540. doi:10.1097/00007691-200410000-0001215385837
  • DagenaisR, WilbyKJ, ElewaH, EnsomMHH. Impact of genetic polymorphisms on phenytoin pharmacokinetics and clinical outcomes in the Middle East and North Africa Region. Drugs R D. 2017;17(3):341–361.28748348
  • TateSK, DepondtC, SisodiyaSM, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A. 2005;102(15):5507–5512. doi:10.1073/pnas.040734610215805193
  • KuroseK, SugiyamaE, SaitoY. Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet. 2012;27(1):9–54. doi:10.2133/dmpk.DMPK-11-RV-11122123129
  • HirotaT, EguchiS, IeiriI. Impact of genetic polymorphisms in CYP2C9 and CYP2C19 on the pharmacokinetics of clinically used drugs. Drug Metab Pharmacokinet. 2013;28(1):28–37. doi:10.2133/dmpk.DMPK-12-RV-08523165865
  • DaiDP, WangYH, WangSH, et al. In vitro functional characterization of 37 CYP2C9 allelic isoforms found in Chinese Han population. Acta Pharmacol Sin. 2013;34(11):1449–1456. doi:10.1038/aps.2013.12324077631
  • LuoSB, LiCB, DaiDP, et al. Characterization of a novel CYP2C9 mutation (1009C>A) detected in a warfarin-sensitive patient. J Pharmacol Sci. 2014;125(2):150–156. doi:10.1254/jphs.13189FP25075423
  • DaiDP, LiCB, WangSH, et al. Identification and characterization of a novel CYP2C9 allelic variant in a warfarin-sensitive patient. Pharmacogenomics. 2015;16(13):1475–1486. doi:10.2217/pgs.15.8926255664
  • DaiD-P, WangS-H, LiC-B, et al. Identification and functional assessment of a new CYP2C9 allelic variant CYP2C9*59. Drug Metab Dispos. 2015;43(8):1246–1249. doi:10.1124/dmd.115.06341225994031
  • ZangerUM, TurpeinenM, KleinK, SchwabM. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem. 2008;392(6):1093–1108.18695978
  • WerkAN, CascorbiI. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 2014;96(3):340–348. doi:10.1038/clpt.2014.12924926778
  • LiAP, KaminskiDL, RasmussenA. Substrates of human hepatic cytochrome P450 3A4. Toxicology. 1995;104(1–3):1–8. doi:10.1016/0300-483X(95)03155-98560487
  • ZhouSF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008;9(4):310–322. doi:10.2174/13892000878422066418473749
  • WestlindA, LöfbergL, TindbergN, AnderssonTB, Ingelman-SundbergM. Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5ʹ-upstream regulatory region. Biochem Biophys Res Commun. 1999;259(1):201–205. doi:10.1006/bbrc.1999.075210334940
  • HuGX, DaiDP, WangH, et al. Systematic screening for CYP3A4 genetic polymorphisms in a Han Chinese population. Pharmacogenomics. 2017;18(4):369–379. doi:10.2217/pgs-2016-017928244811
  • DaiDP, XuRA, HuLM, et al. CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database. Pharmacogenomics J. 2014;14(1):85–92. doi:10.1038/tpj.2013.223400009
  • FangP, TangPF, XuRA, et al. Functional assessment of CYP3A4 allelic variants on lidocaine metabolism in vitro. Drug Des Devel Ther. 2017;11:3503–3510. doi:10.2147/DDDT.S152366
  • YangCC, ZhengX, LiuTH, et al. Functional characterization of 21 CYP3A4 variants on amiodarone metabolism in vitro. Xenobiotica. 2019;49(1):120–126. doi:10.1080/00498254.2017.141497129394111
  • WangL, BaoSH, PanPP, et al. Effect of CYP2C9 genetic polymorphism on the metabolism of flurbiprofen in vitro. Drug Dev Ind Pharm. 2015;41(8):1363–1367. doi:10.3109/03639045.2014.95027425144335
  • XiaMM, WangL, PanPP, et al. The role of CYP2C9 genetic polymorphisms in the oxidative metabolism of diclofenac in vitro. Pharmazie. 2014;69(12):898–903.25951663
  • BlaisdellJ, Jorge-NebertLF, CoulterS, et al. Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics. 2004;14(8):527–537. doi:10.1097/01.fpc.0000114759.08559.5115284535
  • PanPP, WengQH, ZhouCJ, et al. The role of CYP2C9 genetic polymorphism in carvedilol O-desmethylation in vitro. Eur J Drug Metab Pharmacokinet. 2016;41(1):79–86. doi:10.1007/s13318-014-0245-225476996
  • KingBP, KhanTI, AithalGP, KamaliF, DalyAK. Upstream and coding region CYP2C9 polymorphisms: correlation with warfarin dose and metabolism. Pharmacogenetics. 2004;14(12):813–822. doi:10.1097/00008571-200412000-0000415608560
  • ChenM, ZhangY, PanP, et al. Effects of cytochrome P450 2C9 polymorphism on bosentan metabolism. Drug Metab Dispos. 2014;42(11):1820–1825. doi:10.1124/dmd.114.06024425142737
  • SiD, GuoY, ZhangY, YangL, ZhouH, ZhongD. Identification of a novel variant CYP2C9 allele in Chinese. Pharmacogenetics. 2004;14(7):465–469. doi:10.1097/01.fpc.0000114749.08559.e415226678
  • GuoY, ZhangY, WangY, et al. Role of CYP2C9 and its variants (CYP2C9*3 and CYP2C9*13) in the metabolism of lornoxicam in humans. Drug Metab Dispos. 2005;33(6):749–753. doi:10.1124/dmd.105.00361615764711
  • GuoY, WangY, SiD, FawcettPJ, ZhongD, ZhouH. Catalytic activities of human cytochrome P450 2C9*1, 2C9*3 and 2C9*13. Xenobiotica. 2005;35(9):853–861. doi:10.1080/0049825050025636716308280
  • DeLozierTC, LeeSC, CoulterSJ, GohBC, GoldsteinJA. Functional characterization of novel allelic variants of CYP2C9 recently discovered in southeast Asians. J Pharmacol Exp Ther. 2005;315(3):1085–1090. doi:10.1124/jpet.105.09118116099926
  • VeenstraDL, BloughDK, HigashiMK, et al. CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes. Clin Pharmacol Ther. 2005;77(5):353–364. doi:10.1016/j.clpt.2005.01.01915900281
  • MaekawaK, Fukushima-UesakaH, TohkinM, et al. Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet Genomics. 2006;16(7):497–514. doi:10.1097/01.fpc.0000215069.14095.c616788382
  • MatimbaA, Del-FaveroJ, Van BroeckhovenC, MasimirembwaC. Novel variants of major drug-metabolising enzyme genes in diverse African populations and their predicted functional effects. Hum Genomics. 2009;3(2):169–190. doi:10.1186/1479-7364-3-2-16919164093
  • YinT, MaekawaK, KamideK, et al. Genetic variations of CYP2C9 in 724 Japanese individuals and their impact on the antihypertensive effects of losartan. Hypertens Res. 2008;31(8):1549–1557. doi:10.1291/hypres.31.154918971529
  • DaiDP, WangSH, GengPW, HuGX, CaiJP. In vitro assessment of 36 CYP2C9 allelic isoforms found in the Chinese population on the metabolism of glimepiride. Basic Clin Pharmacol Toxicol. 2014;114(4):305–310. doi:10.1111/bcpt.1215924118918
  • DaiD, TangJ, RoseR, et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther. 2001;299(3):825–831.11714865
  • HsiehKP, LinYY, ChengCL, et al. Novel mutations of CYP3A4 in Chinese. Drug Metab Dispos. 2001;29(3):268–273.11181494
  • EiseltR, DomanskiTL, ZibatA, et al. Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics. 2001;11(5):447–458. doi:10.1097/00008571-200107000-0000811470997
  • SataF, SaponeA, ElizondoG, et al. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther. 2000;67(1):48–56. doi:10.1067/mcp.2000.10439110668853
  • MiyazakiM, NakamuraK, FujitaY, GuengerichFP, HoriuchiR, YamamotoK. Defective activity of recombinant cytochromes P450 3A4.2 and 3A4.16 in oxidation of midazolam, nifedipine, and testosterone. Drug Metab Dispos. 2008;36(11):2287–2291. doi:10.1124/dmd.108.02181618669585
  • LambaJK, LinYS, ThummelK, et al. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics. 2002;12(2):121–132. doi:10.1097/00008571-200203000-0000611875366
  • DrögemöllerB, PlummerM, KorkieL, et al. Characterization of the genetic variation present in CYP3A4 in three South African populations. Front Genet. 2013;4:17. doi:10.3389/fgene.2013.0001723423246
  • XuRA, WenJ, TangP, et al. Functional characterization of 22 CYP3A4 protein variants to metabolize ibrutinib in vitro. Basic Clin Pharmacol Toxicol. 2018;122(4):383–387. doi:10.1111/bcpt.1293429117640