239
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Mini-Tablets versus Nanoparticles for Controlling the Release of Amoxicillin: In vitro/In vivo Study

, , , , &
Pages 5405-5418 | Published online: 07 Dec 2020

References

  • PrasannaAPS, VenkatasubbuGD. Sustained release of amoxicillin from hydroxyapatite nanocomposite for bone infections. Prog Biomater. 2018;7(4):289–296. doi:10.1007/s40204-018-0103-430478795
  • ArunachalamA, KarthikeyanM, ThulasiramarajuT. Formulation in vitro evaluation of Mebeverine HCl sustained release matrix tablets. Int J Adv Pharm Sci. 2013;4(5):1009–1020.
  • GaoP, NieX, ZouM, et al. Recent advances in materials for extended-release antibiotic delivery system. J Antibiot. 2011;64(9):625–663. doi:10.1038/ja.2011.58
  • HamdaniJ, MoësAJ, AmighiK. Development and evaluation of prolonged release pellets obtained by the melt pelletization process. Int J Pharm. 2002;245(1–2):167–177. doi:10.1016/S0378-5173(02)00348-412270253
  • Al RemawiaM, Al-akaylehF, SalemM, Al ShamiM, BadwanA. Application of excipient made from Chitosan-Xanthan as a single component for the controlled release of ambroxol tablet. J Excipients Food Chem. 2013;4:48–57.
  • MaderueloC, ZarzueloA, LanaoM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release. 2011;154:2–19.21497624
  • GooleJ, DeleuzeP, VanderbistF, AmighiK. New levodopa sustained-release floating Mini-tablets coated with insoluble acrylic polymer. Eur J Pharm Biopharm. 2008;68(2):310–318.17804212
  • RobertsM, VellucciD, MostafaS, MiolaneC, MarchaudD. Development and evaluation of sustained-release Compritol® 888 ATO matrix mini-tablets. Drug Dev Ind Pharm. 2012;38(9):1068–1076.22149472
  • MohamedFAA, RobertsM, SetonL, FordJL, LevinaM, Rajabi-SiahboomiAR. The influence of HPMC concentration on release of theophylline or hydrocortisone from extended release mini-tablets. Drug Dev Ind Pharm. 2013;39(8):1167–1174.22540355
  • BiswasN, SahooRK, GuhaA, KuotsuK. Chronotherapeutic delivery of hydroxypropylmethylcellulose based mini-tablets: an in vitro–in vivo correlation. Int J Biol Macromol. 2014;66:179–185. doi:10.1016/j.ijbiomac.2014.02.03624565899
  • MullerRH, GohlaS, KeckCM. State of the art of nanocrystals – special features, production, nanotoxicology aspects and intracellular delivery.Eur J Pharm Biopharm. 2011;78(1):1–9. doi:10.1016/j.ejpb.2011.01.00721266197
  • ChokshiNV, KhatriHN, PatelMM. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Drug Dev Ind Pharm. 2018;44(12):1975–1989. doi:10.1080/03639045.2018.150647230058392
  • KimBYS, RutkaJT, ChanWCW. Current concept: nanomedicine. N Engl J Med. 2010;363(25):2434–2443. doi:10.1056/NEJMra091227321158659
  • GuL, ShiT, SunY, et al. Folate-modified, indocyanine green-loaded lipid-polymer hybrid nanoparticles for targeted delivery of cisplatin. J Biomater Sci Polym Ed. 2017;28(7):690–702. doi:10.1080/09205063.2017.129634728277002
  • Salvador-MoralesC, ZhangL, LangerR, FarokhzadOC. Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials. 2009;30(12):2231–2240. doi:10.1016/j.biomaterials.2009.01.00519167749
  • López-LópezM, Fernández-DelgadoA, MoyáML, Blanco-ArévaloD, CarreraC, de la HabaR. Optimized Preparation of Levofloxacin Loaded Polymeric Nanoparticles. Pharmaceutics. 2019;11(2):57. doi:10.3390/pharmaceutics11020057
  • MukherjeeA, WatersAK, KalyanP, AchrolAS, KesariS, YenugondaVM. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomed. 1937–1952;2019:(14).
  • VieiraACC, ChavesLL, PinheiroS, et al. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int J Pharm. 2018;536(1):478–485. doi:10.1016/j.ijpharm.2017.11.07129203137
  • JainAS, ShahS, NagarsenkerMS, et al. Lipid Colloidal Carriers for Improvement of Anticancer Activity of Orally Delivered Quercetin: formulation, Characterization and Establishing In Vitro–In Vivo Advantage.J Biomed Nanotech. 2013;9(7):1230–1240. doi:10.1166/jbn.2013.1636
  • ZhangL, ChanJM, GuFX, et al. Self-assembled lipid–polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano. 2008;2;1696–1702.19206374
  • World Health Organization. World Health Organization Model List of Essential Medicines: 21st List 2019. Geneva: World Health Organization; 2019.
  • BegS, NayakAK, KohliK, SwainS, HasnainMS. Antimicrobial activity assessment of time-dependent release bilayer tablets of amoxicillin trihydrate. Brazilian J Pharm Sci. 2012;48(2):265–272. doi:10.1590/S1984-82502012000200010
  • AntosD, Schneider-BrachertW, BästleinE, et al. 7-Day triple therapy of Helicobacter pylori infection with levofloxacin, amoxicillin, and high-dose esomeprazole in patients with known antimicrobial sensitivity. Helicobacter. 2006;11(1):39–45. doi:10.1111/j.0083-8703.2006.00375.x16423088
  • KayeCM, et al. The clinical pharmacokinetics of a new pharmacokinetically enhanced formulation of amoxicillin/clavulanate. Clin Ther. 2001;23(4):578–584. doi:10.1016/S0149-2918(01)80061-811354391
  • SahasathianT, KerdcholpetchT, ChanwerochA, PraphairaksitN, SuwonjandeeN, MuangsinN. Ch Anwer och, A.; Praphairaksit, N.; Suwonjandee, N.; Muangsin, N. Sustained release of amoxicillin from chitosan tablets. Arch Pharm Res. 2007;30(4):526–531. doi:10.1007/BF0298022917489371
  • KultidaS, JatupornP, NarongP, NongnujM. Sustained Release of Amoxicillin from Ethyl Cellulose-Coated Amoxicillin/Chitosan–Cyclodextrin-Based Tablets. AAPS PharmSciTech. 2011;12:1.21152999
  • AkiH, NakashimaY, KawasakiY, NiiyaT. Thermodynamic evaluation of antibacterial activity for inclusion complexes of amoxicillin with cyclodextrins. J Therm Anal Calorim. 2006;85(3):685–688. doi:10.1007/s10973-006-7650-y
  • DongW, WangX, LiuC, et al. Chitosan based polymer-lipid hybrid nanoparticles for oral delivery of enoxaparin. International Journal of Pharmaceutics. 2018;547(1–2):499–505. doi:10.1016/j.ijpharm.2018.05.07629859924
  • United States Pharmacopoeia-30 and National Formulary‐25. Official Compendia of Standards. Rockvile (US): United States Pharmacopoeial Convention; 2007.
  • HadizadehM, TorajiA. Amoxicillin-Loaded Polymeric Nanoparticles of Less than 100 nm: design, Preparation and Antimicrobial Activity Against Methicillin-Resistant Staphylococcus aureus. Iranian Journal of Science and Technology, Transactions A: Science. 2019;43(2):379–386. doi:10.1007/s40995-017-0346-2
  • ZhangY, HuoM, ZhouJ, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–271. doi:10.1208/s12248-010-9185-120373062
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing, Disc Di_usion Supplemental Tables. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2013.
  • CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2015.
  • McNultyC, OwenR, TompkinsD, et al. Helicobacter pylori susceptibility testing by disc diffusion. J Antimicrobial Chem. 2002;49(4):601–609. doi:10.1093/jac/49.4.601
  • KahlmeterG, BrownDF, GoldsteinFW, et al. European Committee on Antimicrobial Susceptibility Testing (EUCAST) Technical Notes on antimicrobial susceptibility testing.Clin Microbiol Infect. 2006;12(6):501–503. doi:10.1111/j.1469-0691.2006.01454.x16700696
  • DiehlK-H, HullR, MortonD, PfisterR. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001;21(1):15–23. doi:10.1002/jat.72711180276
  • RadwanMA, ElaAESF, HassanMA, El-MaraghyDA. A. el S.; Hassan, M. A.; El-Maraghy, D. A. Pharmacokinetics and analgesic effect of ketorolac floating delivery system. Drug Deliv. 2015;22(3):320–327. doi:10.3109/10717544.2014.88318924512312
  • MatarKM. Simple and Rapid LC Method for the Determination of Amoxicillin in Plasma. Chromatographia. 2006;64(5–6):255–260. doi:10.1365/s10337-006-0021-9
  • WilsonB, SitarambhaiPH, SajeevM, VinothapooshanG. Design and evaluation of sustained release matrix tablets of levofloxacin for effective treatment of microbial infections. Int J Drug Deliv. 2011;3:305–314.
  • ManivannanR, ChakoleV. Formulation and development of extended release floating tablet of atenolol. Int J Recent Adv Pharm Res. 2011;3:25–30.
  • SavicIM, NikolicK, NikolicG, SavicI, AgbabaD, CakicM. Application of mathematical modeling for the development and optimization formulation with bioactive copper complex. Drug Dev Industrial Pharm. 2013;39(7):1–7. doi:10.3109/03639045.2012.707208
  • GargA, GuptaM. Taste masking and formulation development & evaluation of mouth dissolving tablets of levocetirizine dihydrochloride. J Drug Deliv Ther. 2013;3:123–130.
  • TrottaM, DebernardiF, CaputoO. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int J Pharm. 2003;257(1–2):153–160. doi:10.1016/S0378-5173(03)00135-212711170
  • AnwerMK, IqbalM, MuharramMM, et al. Development of Lipomer Nanoparticles for the Enhancement of Drug Release, Anti-microbial Activity and Bioavailability of Delafloxacin. Pharmaceutics. 2020;12(3):252.
  • MohammedM, AlnafisahMS, AnwerK, et al. Chitosan surface modified PLGA nanoparticles loaded with brigatinib for the treatment of non-small cell lung cancer. J Polymer Eng. 2019;39(10):909–916. doi:10.1515/polyeng-2019-0265
  • SonvicoF, CagnaniA, RossiA, et al. Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int J Pharm. 2006;324(1):67–73. doi:10.1016/j.ijpharm.2006.06.03616973314
  • TiwariS, Rajabi-SiahboomiA. Applications of complementary polymers in HPMC hydrophilic extended release matrices. Drug Deliv Technol. 2009;9:20–27.
  • TatavartiA, MehtaK, AugsburgerL, HoagS. Influence of methacrylic and acrylic acid polymers on the release performance of weakly basic drugs from sustained release hydrophilic matrices. J Pharm Sci. 2014;66(9):2319–2331. doi:10.1002/jps.20129
  • XiaochenG, DarylJ, EstelleR, KeithJ. Evaluation and comparison of five matrix excipients for the controlled release of acrivastine and pseudoephedrine. Drug Dev Ind Pharm. 2004;30:1009–1017.15595567
  • CheowWS, ChangMW, HadinotoK. The roles of lipid in anti-biofilm efficacy of lipid–polymer hybrid nanoparticles encapsulating antibiotics. Coll Surf a Phys Eng Asp. 2011;389:158–165.
  • KamalyN, YameenB, WuJ, FarokhzadOC. Degradable controlled release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–2663.26854975
  • ZhengY, WangL, LuL, WangQ, BenicewiczB. C. pH and thermal dual-responsive nanoparticles for controlled drug delivery with high loading content. ACS Omega. 2017;2(7):3399–3405.30023694
  • CostaP, Sousa LoboJM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–133.11297896
  • KhanAA, MudassirJ, AkhtarS, MurugaiyahV, DarwisY. Freeze-dried lopinavir-loaded nanostructured lipid carriers for enhanced cellular uptake and bioavailability: statistical optimization, in vitro and in vivo evaluations. Pharmaceutics. 2019;11:97.
  • TahirN, MadniA, CorreiaA, et al. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int J Nanomedicine. 2019;14:4961–4974. doi:10.2147/IJN.S20932531308666
  • IqbalM, EzzeldinE, HerqashRN, AnwerMK, AzamF. Development and validation of a novel UPLC-MS/MS method for quantification of delafloxacin in plasma and aqueous humour for pharmacokinetic analyses. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1138:121961.
  • PandeA, VaidyaP, AroraA. In vitro and in vivo evaluation of ethyl cellulose based floating microspheres of cefpodoxime proxetil. Int J Pharm Biomed Res. 2010;1:122–128.