677
Views
22
CrossRef citations to date
0
Altmetric
Review

Drug Discovery and Development in Rare Diseases: Taking a Closer Look at the Tafamidis Story

, , , , , , , , & show all
Pages 1225-1243 | Published online: 18 Mar 2021

References

  • de VruehR, BaekelandtE. Rare diseases. In: KaplanW, WirtzV, Mantel-TeeuwisseA, StolkP, DutheyB, LaingR, editors. Priority Medicines for Europe and the World 2013 Update. Geneva, Switzerland: World Health Organization; 2013:148–151.
  • ValdezR, OuyangL, BolenJ. Public health and rare diseases: oxymoron no more. Prev Chronic Dis. 2016;13:E05. doi:10.5888/pcd13.15049126766846
  • DharssiS, Wong-RiegerD, HaroldM, TerryS. Review of 11 national policies for rare diseases in the context of key patient needs. Orphanet J Rare Dis. 2017;12(1):63. doi:10.1186/s13023-017-0618-028359278
  • National Institute of Health [Internet]. Public law 97–414 97th congress. 1983. Available from: https://history.nih.gov/research/downloads/PL97-414.pdf. Accessed 64, 2020.
  • The European Parliament and the Council of the European Union [Internet]. Regulation (EC) N°141/2000 of the European parliament and of the council of 16 December 1999 on orphan medicinal products. 2000. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:018:0001:0005:EN:PDF. Accessed 64, 2020.
  • US Food & Drug Administration [Internet]. Designating an orphan product: drugs and biological products. 2020. Available from: https://www.fda.gov/industry/developing-products-rare-diseases-conditions/designating-orphan-product-drugs-and-biological-products. Accessed 820, 2020.
  • MarizS, ReeseJH, WestermarkK, et al. Worldwide collaboration for orphan drug designation. Nat Rev Drug Discov. 2016;15(6):440–441. doi:10.1038/nrd.2016.8027245396
  • MulbergAE, Bucci-RechtwegC, GiulianoJ, et al. Regulatory strategies for rare diseases under current global regulatory statutes: a discussion with stakeholders. Orphanet J Rare Dis. 2019;14(1):36. doi:10.1186/s13023-019-1017-530736861
  • Global Genes [Internet]. Rare diseases: facts and statistics. 2019. Available from: https://globalgenes.org/rare-facts/. Accessed 64, 2020.
  • BensonMD, BuxbaumJN, EisenbergDS, et al. Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid. 2018;25(4):215–219. doi:10.1080/13506129.2018.154982530614283
  • MaurerMS, MannDL. The tafamidis drug development program: a translational triumph. JACC Basic Transl Sci. 2018;3(6):871–873. doi:10.1016/j.jacbts.2018.10.00130623146
  • Institute of Medicine (US) Committee on Accelerating Rare Diseases Research and Orphan Product Development. Rare Diseases and Orphan Products: Accelerating Research and Development. Washington, DC: National Academies Press (US); 2010.
  • StewartM, ShafferS, MurphyB, et al. Characterizing the high disease burden of transthyretin amyloidosis for patients and caregivers. Neurol Ther. 2018;7(2):349–364. doi:10.1007/s40120-018-0106-z30073497
  • US Food and Drug Administration [Internet]. Rare diseases: common issues in drug development. Guidance for industry. 2019. Available from: https://www.fda.gov/media/119757/download. Accessed 64, 2020.
  • Orphanet [Internet]. About orphan drugs. 2020. Available from: https://www.orpha.net/consor/cgi-bin/Education_AboutOrphanDrugs.php?lng=EN. Accessed 424, 2020.
  • Tufts Center for the Study of Drug Development. Growth in Rare Disease R&D is Challenging Development Strategy and Execution. Vol. 21. Boston, MA: Tufts University; 2019.
  • WittelesRM, BokhariS, DamyT, et al. Screening for transthyretin amyloid cardiomyopathy in everyday practice. JACC Heart Fail. 2019;7(8):709–716. doi:10.1016/j.jchf.2019.04.01031302046
  • GainottiS, MascalzoniD, Bros-FacerV, et al. Meeting patients’ right to the correct diagnosis: ongoing international initiatives on undiagnosed rare diseases and ethical and social issues. Int J Environ Res Public Health. 2018;15(10):2072. doi:10.3390/ijerph15102072
  • MaurerMS, SchwartzJH, GundapaneniB, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–1016. doi:10.1056/NEJMoa180568930145929
  • JayasundaraK, HollisA, KrahnM, MamdaniM, HochJS, GrootendorstP. Estimating the clinical cost of drug development for orphan versus non-orphan drugs. Orphanet J Rare Dis. 2019;14(1):12. doi:10.1186/s13023-018-0990-430630499
  • AndoY, CoelhoT, BerkJL, et al. Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J Rare Dis. 2013;8(1):31. doi:10.1186/1750-1172-8-3123425518
  • MaurerMS, HannaM, GroganM, et al. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J Am Coll Cardiol. 2016;68(2):161–172. doi:10.1016/j.jacc.2016.03.59627386769
  • WechalekarAD, GillmoreJD, HawkinsPN. Systemic amyloidosis. Lancet. 2016;387(10038):2641–2654. doi:10.1016/S0140-6736(15)01274-X26719234
  • Waddington-CruzM, SchmidtH, BottemanMF, et al. Epidemiological and clinical characteristics of symptomatic hereditary transthyretin amyloid polyneuropathy: a global case series. Orphanet J Rare Dis. 2019;14(1):34. doi:10.1186/s13023-019-1000-130736835
  • RowczenioD, QuartaCC, FontanaM, et al. Analysis of the TTR gene in the investigation of amyloidosis: a 25-year single UK center experience. Hum Mutat. 2019;40(1):90–96. doi:10.1002/humu.2366930328212
  • ConnorsLH, LimA, ProkaevaT, RoskensVA, CostelloCE. Tabulation of human transthyretin (TTR) variants, 2003. Amyloid. 2003;10(3):160–184. doi:10.3109/1350612030899899814640030
  • GertzMA, BensonMD, DyckPJ, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol. 2015;66(21):2451–2466. doi:10.1016/j.jacc.2015.09.07526610878
  • RapezziC, QuartaCC, ObiciL, et al. Disease profile and differential diagnosis of hereditary transthyretin-related amyloidosis with exclusively cardiac phenotype: an Italian perspective. Eur Heart J. 2013;34(7):520–528. doi:10.1093/eurheartj/ehs12322745357
  • BrunjesDL, CastanoA, ClemonsA, RubinJ, MaurerMS. Transthyretin cardiac amyloidosis in older Americans. J Card Fail. 2016;22(12):996–1003. doi:10.1016/j.cardfail.2016.10.00827769906
  • SchmidtHH, Waddington-CruzM, BottemanMF, et al. Estimating the global prevalence of transthyretin familial amyloid polyneuropathy. Muscle Nerve. 2018;57(5):829–837. doi:10.1002/mus.2603429211930
  • JacobsonDR, AlexanderAA, TagoeC, BuxbaumJN. Prevalence of the amyloidogenic transthyretin (TTR) V122I allele in 14 333 African-Americans. Amyloid. 2015;22(3):171–174. doi:10.3109/13506129.2015.105121926123279
  • DamrauerSM, ChaudharyK, ChoJH, et al. Association of the V122I hereditary transthyretin amyloidosis genetic variant with heart failure among individuals of African or Hispanic/Latino ancestry. JAMA. 2019;322(22):2191–2202. doi:10.1001/jama.2019.1793531821430
  • RubergFL, GroganM, HannaM, KellyJW, MaurerMS. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(22):2872–2891. doi:10.1016/j.jacc.2019.04.00331171094
  • AdamsD, KoikeH, SlamaM, CoelhoT. Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat Rev Neurol. 2019;15(7):387–404. doi:10.1038/s41582-019-0210-431209302
  • González-LópezE, Gallego-DelgadoM, Guzzo-MerelloG, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36(38):2585–2594. doi:10.1093/eurheartj/ehv33826224076
  • HahnVS, YanekLR, VaishnavJ, et al. Endomyocardial biopsy characterization of heart failure with preserved ejection fraction and prevalence of cardiac amyloidosis. JACC Heart Fail. 2020;8(9):712–724. doi:10.1016/j.jchf.2020.04.00732653448
  • LindmarkK, PilebroB, SundströmT, LindqvistP. Prevalence of wild type transtyrethin cardiac amyloidosis in a heart failure clinic. ESC Heart Fail. 2020. doi:10.1002/ehf2.13110
  • ShiozakiT, SatoN, HayashiT, KobayashiK, AsamuraH. Wild-type ATTR amyloidosis may be associated with unexpected death among the elderly. Leg Med (Tokyo). 2019;41:101634. doi:10.1016/j.legalmed.2019.10163431731233
  • TanskanenM, PeuralinnaT, PolvikoskiT, et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med. 2008;40(3):232–239. doi:10.1080/0785389070184298818382889
  • PomeranceA. Senile cardiac amyloidosis. Br Heart J. 1965;27(5):711–718. doi:10.1136/hrt.27.5.7115829755
  • CornwellGG 3rd, MurdochWL, KyleRA, WestermarkP, PitkänenP. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am J Med. 1983;75(4):618–623. doi:10.1016/0002-9343(83)90443-66624768
  • GertzM, AdamsD, AndoY, et al. Avoiding misdiagnosis: expert consensus recommendations for the suspicion and diagnosis of transthyretin amyloidosis for the general practitioner. BMC Fam Pract. 2020;21(1):198. doi:10.1186/s12875-020-01252-432967612
  • ConnorsLH, SamF, SkinnerM, et al. Heart failure resulting from age-related cardiac amyloid disease associated with wild-type transthyretin: a prospective, observational cohort study. Circulation. 2016;133(3):282–290. doi:10.1161/CIRCULATIONAHA.115.01885226660282
  • BrunoM, CastañoA, BurtonA, GrodinJL. Transthyretin amyloid cardiomyopathy in women: frequency, characteristics, and diagnostic challenges. Heart Fail Rev. 2021;26(1):35–45. doi:10.1007/s10741-020-10010-8
  • RubergFL, MaurerMS, JudgeDP, et al. Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis Cardiac Study (TRACS). Am Heart J. 2012;164(2):222–228.e221. doi:10.1016/j.ahj.2012.04.01522877808
  • GillmoreJD, DamyT, FontanaM, et al. A new staging system for cardiac transthyretin amyloidosis. Eur Heart J. 2018;39(30):2799–2806. doi:10.1093/eurheartj/ehx58929048471
  • GroganM, ScottCG, KyleRA, et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol. 2016;68(10):1014–1020. doi:10.1016/j.jacc.2016.06.03327585505
  • HolmgrenG, SteenL, EkstedtJ, et al. Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin Genet. 1991;40(3):242–246. doi:10.1111/j.1399-0004.1991.tb03085.x1685359
  • de CarvalhoM, ConceiçãoI, BentesC, LuísML. Long-term quantitative evaluation of liver transplantation in familial amyloid polyneuropathy (Portuguese V30M). Amyloid. 2002;9(2):126–133. doi:10.3109/1350612020899524512440485
  • HerleniusG, WilczekHE, LarssonM, EriczonBG. Ten years of international experience with liver transplantation for familial amyloidotic polyneuropathy: results from the Familial amyloidotic polyneuropathy world transplant registry. Transplantation. 2004;77(1):64–71. doi:10.1097/01.TP.0000092307.98347.CB14724437
  • YamashitaT, AndoY, OkamotoS, et al. Long-term survival after liver transplantation in patients with familial amyloid polyneuropathy. Neurology. 2012;78(9):637–643. doi:10.1212/WNL.0b013e318248df1822345221
  • OkamotoS, WixnerJ, ObayashiK, et al. Liver transplantation for familial amyloidotic polyneuropathy: impact on Swedish patients’ survival. Liver Transpl. 2009;15(10):1229–1235. doi:10.1002/lt.2181719790145
  • StangouAJ, HawkinsPN, HeatonND, et al. Progressive cardiac amyloidosis following liver transplantation for familial amyloid polyneuropathy: implications for amyloid fibrillogenesis. Transplantation. 1998;66(2):229–233. doi:10.1097/00007890-199807270-000169701270
  • LiepnieksJJ, BensonMD. Progression of cardiac amyloid deposition in hereditary transthyretin amyloidosis patients after liver transplantation. Amyloid. 2007;14(4):277–282. doi:10.1080/1350612070161403217968687
  • TakeiY, IkedaS, IkegamiT, HashikuraY, MiyagawaS, AndoY. Ten years of experience with liver transplantation for familial amyloid polyneuropathy in Japan: outcomes of living donor liver transplantations. Intern Med. 2005;44(11):1151–1156. doi:10.2169/internalmedicine.44.115116357452
  • DubreySW, BurkeMM, HawkinsPN, BannerNR. Cardiac transplantation for amyloid heart disease: the United Kingdom experience. J Heart Lung Transplant. 2004;23(10):1142–1153. doi:10.1016/j.healun.2003.08.02715477107
  • RuygrokPN, GaneEJ, McCallJL, ChenXZ, HaydockDA, MunnSR. Combined heart and liver transplantation for familial amyloidosis. Intern Med J. 2001;31(1):66–67. doi:10.1046/j.1445-5994.2001.00008.x11478363
  • FalkRH. Diagnosis and management of the cardiac amyloidoses. Circulation. 2005;112(13):2047–2060. doi:10.1161/CIRCULATIONAHA.104.48918716186440
  • SousaM, MonohanG, RajagopalanN, GrigorianA, GuglinM. Heart transplantation in cardiac amyloidosis. Heart Fail Rev. 2017;22(3):317–327. doi:10.1007/s10741-017-9601-z28281017
  • CoelhoT, MaiaLF, Martins da SilvaA, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79(8):785–792. doi:10.1212/WNL.0b013e3182661eb122843282
  • HammarstromP, SchneiderF, KellyJW. Trans-suppression of misfolding in an amyloid disease. Science. 2001;293(5539):2459–2462. doi:10.1126/science.106224511577236
  • HammarstromP, WisemanRL, PowersET, KellyJW. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science. 2003;299(5607):713–716. doi:10.1126/science.107958912560553
  • MaurerMS, BokhariS, DamyT, et al. Expert consensus recommendations for the suspicion and diagnosis of transthyretin cardiac amyloidosis. Circ Heart Fail. 2019;12(9):e006075. doi:10.1161/CIRCHEARTFAILURE.119.00607531480867
  • McCutchenSL, ColonW, KellyJW. Transthyretin mutation Leu-55-Pro significantly alters tetramer stability and increases amyloidogenicity. Biochemistry. 1993;32(45):12119–12127. doi:10.1021/bi00096a0248218290
  • MiroyGJ, LaiZ, LashuelHA, PetersonSA, StrangC, KellyJW. Inhibiting transthyretin amyloid fibril formation via protein stabilization. Proc Natl Acad Sci U S A. 1996;93(26):15051–15056. doi:10.1073/pnas.93.26.150518986762
  • PetersonSA, KlabundeT, LashuelHA, PurkeyH, SacchettiniJC, KellyJW. Inhibiting transthyretin conformational changes that lead to amyloid fibril formation. Proc Natl Acad Sci U S A. 1998;95(22):12956–12960. doi:10.1073/pnas.95.22.129569789022
  • RazaviH, PowersET, PurkeyHE, et al. Design, synthesis, and evaluation of oxazole transthyretin amyloidogenesis inhibitors. Bioorg Med Chem Lett. 2005;15(4):1075–1078. doi:10.1016/j.bmcl.2004.12.02215686915
  • SekijimaY, DendleMA, KellyJW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid. 2006;13(4):236–249. doi:10.1080/1350612060096088217107884
  • KopelmanM, CoganU, MokadyS, ShinitzkyM. The interaction between retinol-binding proteins and prealbumins studied by fluorescence polarization. Biochim Biophys Acta. 1976;439(2):449–460. doi:10.1016/0005-2795(76)90082-9986177
  • MonacoHL, RizziM, CodaA. Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science. 1995;268(5213):1039–1041. doi:10.1126/science.77543827754382
  • MonacoHL. The transthyretin-retinol-binding protein complex. Biochim Biophys Acta. 2000;1482(1–2):65–72. doi:10.1016/S0167-4838(00)00140-011058748
  • BartalenaL, RobbinsJ. Variations in thyroid hormone transport proteins and their clinical implications. Thyroid. 1992;2(3):237–245. doi:10.1089/thy.1992.2.2371422238
  • BartalenaL, RobbinsJ. Thyroid hormone transport proteins. Clin Lab Med. 1993;13(3):583–598. doi:10.1016/S0272-2712(18)30427-X8222576
  • CoelhoT, ChorãoR, SousaA, AlvesI, TorresMF, SaraivaMJM. Compound heterozygotes of transthyretin Met30 and transthyretin Met119 are protected from the devastating effects of familial amyloid polyneuropathy [abstract]. Neuromuscul Disord. 1996;6(Suppl 1):S20. doi:10.1016/0960-8966(96)88826-2
  • Longo AlvesI, HaysMT, SaraivaMJ. Comparative stability and clearance of [Met30]transthyretin and [Met119]transthyretin. Eur J Biochem. 1997;249(3):662–668. doi:10.1111/j.1432-1033.1997.00662.x9395311
  • JohnsonSM, WisemanRL, SekijimaY, GreenNS, Adamski-WernerSL, KellyJW. Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc Chem Res. 2005;38(12):911–921. doi:10.1021/ar020073i16359163
  • ColonW, KellyJW. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 1992;31(36):8654–8660. doi:10.1021/bi00151a0361390650
  • LaiZ, ColonW, KellyJW. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry. 1996;35(20):6470–6482. doi:10.1021/bi952501g8639594
  • HammarstromP, JiangX, HurshmanAR, PowersET, KellyJW. Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc Natl Acad Sci U S A. 2002;99:16427–16432. doi:10.1073/pnas.20249519912351683
  • SchneiderF, HammarstromP, KellyJW. Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins. Protein Sci. 2001;10(8):1606–1613. doi:10.1110/ps.890111468357
  • WisemanRL, GreenNS, KellyJW. Kinetic stabilization of an oligomeric protein under physiological conditions demonstrated by a lack of subunit exchange: implications for transthyretin amyloidosis. Biochemistry. 2005;44(25):9265–9274. doi:10.1021/bi050352o15966751
  • WisemanRL, PowersET, KellyJW. Partitioning conformational intermediates between competing refolding and aggregation pathways: insights into transthyretin amyloid disease. Biochemistry. 2005;44(50):16612–16623. doi:10.1021/bi051148416342952
  • HurshmanAR, WhiteJT, PowersET, KellyJW. Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry. 2004;43(23):7365–7381. doi:10.1021/bi049621l15182180
  • ConnellyS, ChoiS, JohnsonSM, KellyJW, WilsonIA. Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Curr Opin Struct Biol. 2010;20(1):54–62. doi:10.1016/j.sbi.2009.12.00920133122
  • JohnsonSM, ConnellyS, FearnsC, PowersET, KellyJW. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J Mol Biol. 2012;421(2–3):185–203. doi:10.1016/j.jmb.2011.12.06022244854
  • PurkeyHE, DorrellMI, KellyJW. Evaluating the binding selectivity of transthyretin amyloid fibril inhibitors in blood plasma. Proc Natl Acad Sci U S A. 2001;98(10):5566–5571. doi:10.1073/pnas.09143179811344299
  • MillerSR, SekijimaY, KellyJW. Native state stabilization by NSAIDs inhibits transthyretin amyloidogenesis from the most common familial disease variants. Lab Invest. 2004;84(5):545–552. doi:10.1038/labinvest.370005914968122
  • DharmarajanK, MaurerMS. Transthyretin cardiac amyloidoses in older North Americans. J Am Geriatr Soc. 2012;60(4):765–774. doi:10.1111/j.1532-5415.2011.03868.x22329529
  • BulawaCE, ConnellyS, DevitM, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci U S A. 2012;109(24):9629–9634. doi:10.1073/pnas.112100510922645360
  • RappleyI, MonteiroC, NovaisM, et al. Quantification of transthyretin kinetic stability in human plasma using subunit exchange. Biochemistry. 2014;53(12):1993–2006. doi:10.1021/bi500171j24661308
  • CoelhoT, MerliniG, BulawaCE, et al. Mechanism of action and clinical application of tafamidis in hereditary transthyretin amyloidosis. Neurol Ther. 2016;5(1):1–25. doi:10.1007/s40120-016-0040-x26894299
  • SchmidtHH-J. Tafamidis for the treatment of transthyretin-associated familial amyloid polyneuropathy. Expert Opin Orphan Drugs. 2013;1:837–845. doi:10.1517/21678707.2013.841576
  • European Medicines Agency Committee for Medicinal Products for Human Use [Internet]. Assessment report: Vyndaqel (tafamidis meglumine). 2011. Available from: https://www.ema.europa.eu/en/documents/assessment-report/vyndaqel-epar-public-assessment-report_en.pdf. Accessed 56, 2020.
  • LambYN, DeeksED. Tafamidis: a review in transthyretin amyloidosis with polyneuropathy. Drugs. 2019;79(8):863–874. doi:10.1007/s40265-019-01129-631098895
  • MerliniG, Planté-BordeneuveV, JudgeDP, et al. Effects of tafamidis on transthyretin stabilization and clinical outcomes in patients with non-Val30Met transthyretin amyloidosis. J Cardiovasc Transl Res. 2013;6(6):1011–1020. doi:10.1007/s12265-013-9512-x24101373
  • CoelhoT, MaiaLF, da SilvaAM, et al. Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J Neurol. 2013;260(11):2802–2814. doi:10.1007/s00415-013-7051-723974642
  • European Medicines Agency [Internet]. Tafamidis summary of product characteristics 2011. Available from: https://www.ema.europa.eu/en/documents/product-information/vyndaqel-epar-product-information_en.pdf. Accessed February 4, 2021.
  • BarrosoFA, JudgeDP, EbedeB, et al. Long-term safety and efficacy of tafamidis for the treatment of hereditary transthyretin amyloid polyneuropathy: results up to 6 years. Amyloid. 2017;24(3):194–204. doi:10.1080/13506129.2017.135754528758793
  • MerliniG, CoelhoT, Waddington CruzM, LiH, StewartM, EbedeB. Evaluation of mortality during long-term treatment with tafamidis for transthyretin amyloidosis with polyneuropathy: clinical trial results up to 8.5 years. Neurol Ther. 2020;9(1):105–115. doi:10.1007/s40120-020-00180-w32107748
  • Waddington CruzM, AmassL, KeohaneD, SchwartzJ, LiH, GundapaneniB. Early intervention with tafamidis provides long-term (5.5-year) delay of neurologic progression in transthyretin hereditary amyloid polyneuropathy. Amyloid. 2016;23(3):178–183. doi:10.1080/13506129.2016.120716327494299
  • CoelhoT, InêsM, ConceiçãoI, SoaresM, de CarvalhoM, CostaJ. Natural history and survival in stage 1 Val30Met transthyretin familial amyloid polyneuropathy. Neurology. 2018;91(21):e1999–e2009. doi:10.1212/WNL.000000000000654330333157
  • SocieP, BenmalekAB, LallemandAL, et al. 1170 Tafamidis versus liver transplantation as first-line therapy for hereditary transthyretin amyloidosis [abstract]. Eur Heart J. 2019;40(Suppl1):ehz748.0012. doi:10.1093/eurheartj/ehz748.0012
  • US Food and Drug Administration [Internet]. Highlights of prescribing information: VYNDAQEL and VYNDAMAX. 2019. Available from: https://www.fda.gov/media/126283/download. Accessed 56, 2020.
  • DamyT, JudgeDP, KristenAV, BerthetK, LiH, AartsJ. Cardiac findings and events observed in an open-label clinical trial of tafamidis in patients with non-Val30Met and non-Val122Ile hereditary transthyretin amyloidosis. J Cardiovasc Transl Res. 2015;8(2):117–127. doi:10.1007/s12265-015-9613-925743445
  • MaurerMS, GroganDR, JudgeDP, et al. Tafamidis in transthyretin amyloid cardiomyopathy: effects on transthyretin stabilization and clinical outcomes. Circ Heart Fail. 2015;8(3):519–526. doi:10.1161/CIRCHEARTFAILURE.113.00089025872787
  • SultanMB, GundapaneniB, SchumacherJ, SchwartzJH. Treatment with tafamidis slows disease progression in early-stage transthyretin cardiomyopathy. Clin Med Insights Cardiol. 2017;11:1179546817730322. doi:10.1177/117954681773032228951660
  • KlamerusKJ, WatskyE, MollerR, WangR, RileyS. The effect of tafamidis on the QTc interval in healthy subjects. Br J Clin Pharmacol. 2015;79(6):918–925. doi:10.1111/bcp.1256125546001
  • FinkelsteinDM, SchoenfeldDA. Combining mortality and longitudinal measures in clinical trials. Stat Med. 1999;18(11):1341–1354. doi:10.1002/(SICI)1097-0258(19990615)18:11<1341::AID-SIM129>3.0.CO;2-710399200
  • LiB, AlvirJ, StewartM. Extrapolation of survival benefits in patients with transthyretin amyloid cardiomyopathy receiving tafamidis: analysis of the Tafamidis in Transthyretin Cardiomyopathy Clinical Trial. Cardiol Ther. 2020;9(2):535–540. doi:10.1007/s40119-020-00179-232524297
  • DamyT, Garcia-PaviaP, HannaM, et al. Efficacy and safety of tafamidis doses in the Tafamidis in Transthyretin Cardiomyopathy Clinical Trial (ATTR-ACT) and long-term extension study. Eur J Heart Fail. 2020. doi:10.1002/ejhf.2027
  • LockwoodPA, LeVH, O’GormanMT, et al. The bioequivalence of tafamidis 61-mg free acid capsules and tafamidis meglumine 4 × 20-mg capsules in healthy volunteers. Clin Pharmacol Drug Dev. 2020;9(7):849–854. doi:10.1002/cpdd.78932196976
  • YamashitaT, UedaM, MisumiY, et al. Genetic and clinical characteristics of hereditary transthyretin amyloidosis in endemic and non-endemic areas: experience from a single-referral center in Japan. J Neurol. 2018;265(1):134–140. doi:10.1007/s00415-017-8640-729177547
  • CappelliF, FrusconiS, BergesioF, et al. The Val142Ile transthyretin cardiac amyloidosis: not only an Afro-American pathogenic variant? A single-centre Italian experience. J Cardiovasc Med. 2016;17(2):122–125. doi:10.2459/JCM.0000000000000290
  • MartensB, De PauwM, De BleeckerJL. Single-centre experience on transthyretin familial amyloid polyneuropathy: case series and literature review. Acta Neurol Belg. 2018;118(2):179–185. doi:10.1007/s13760-018-0906-z29524093
  • ChaoHC, LiaoYC, LiuYT, et al. Clinical and genetic profiles of hereditary transthyretin amyloidosis in Taiwan. Ann Clin Transl Neurol. 2019;6(5):913–922. doi:10.1002/acn3.77831139689
  • SamuelssonK, RadovicA, PressR, et al. Screening for Fabry disease and hereditary ATTR amyloidosis in idiopathic small-fiber and mixed neuropathy. Muscle Nerve. 2019;59(3):354–357. doi:10.1002/mus.2634830246259
  • Aus Dem SiepenF, HeinS, PrestelS, et al. Carpal tunnel syndrome and spinal canal stenosis: harbingers of transthyretin amyloid cardiomyopathy? Clin Res Cardiol. 2019;108(12):1324–1330. doi:10.1007/s00392-019-01467-130953182
  • AndreouS, PanayiotouE, MichailidouK, et al. Epidemiology of ATTRV30M neuropathy in Cyprus and the modifier effect of complement C1q on the age of disease onset. Amyloid. 2018;25(4):220–226. doi:10.1080/13506129.2018.153473130572722
  • CarrAS, Pelayo-NegroAL, EvansMR, et al. A study of the neuropathy associated with transthyretin amyloidosis (ATTR) in the UK. J Neurol Neurosurg Psychiatry. 2016;87(6):620–627. doi:10.1136/jnnp-2015-31090726243339
  • Alves-FerreiraM, CoelhoT, SantosD, et al. A trans-acting factor may modify age at onset in familial amyloid polyneuropathy ATTRV30M in Portugal. Mol Neurobiol. 2018;55(5):3676–3683. doi:10.1007/s12035-017-0593-428527106
  • GagneJJ, ThompsonL, O’KeefeK, KesselheimAS. Innovative research methods for studying treatments for rare diseases: methodological review. BMJ. 2014;349:g6802. doi:10.1136/bmj.g680225422272
  • DamyT, KristenAV, SuhrOB, et al. Transthyretin cardiac amyloidosis in continental Western Europe: an insight through the Transthyretin Amyloidosis Outcomes Survey (THAOS). Eur Heart J. 2019. doi:10.1093/eurheartj/ehz173
  • CoelhoT, MaurerMS, SuhrOB. THAOS - the Transthyretin Amyloidosis Outcomes Survey: initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Curr Med Res Opin. 2013;29(1):63–76. doi:10.1185/03007995.2012.75434823193944
  • KristenAV, MaurerMS, RapezziC, MundayatR, SuhrOB, DamyT. Impact of genotype and phenotype on cardiac biomarkers in patients with transthyretin amyloidosis - report from the Transthyretin Amyloidosis Outcome Survey (THAOS). PLoS One. 2017;12(4):e0173086. doi:10.1371/journal.pone.017308628384285
  • HuberP, FlynnA, SultanMB, et al. A comprehensive safety profile of tafamidis in patients with transthyretin amyloid polyneuropathy. Amyloid. 2019;26(4):203–209. doi:10.1080/13506129.2019.164371431353964
  • MundayatR, StewartM, AlvirJ, et al. Positive effectiveness of tafamidis in delaying disease progression in transthyretin familial amyloid polyneuropathy up to 2 years: an analysis from the Transthyretin Amyloidosis Outcomes Survey (THAOS). Neurol Ther. 2018;7(1):87–101. doi:10.1007/s40120-018-0097-929633228
  • ChandrashekarP, DaleZ, RashdanL, et al. Functional class, biomarker stability, and clinical outcomes of patients with transthyretin cardiac amyloidosis treated with tafamidis. Circulation. 2020;142:A17077.
  • HudaA, CastanoA, NiyogiA, et al. A machine learning model of medical claims data for identification of wild-type transthyretin amyloid cardiomyopathy. Nat Commun. In press 2021.