360
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Exploring the Active Compounds of Traditional Mongolian Medicine Baolier Capsule (BLEC) in Patients with Coronary Artery Disease (CAD) Based on Network Pharmacology Analysis, Molecular Docking and Experimental Validation

, , &
Pages 459-476 | Received 08 Nov 2022, Accepted 28 Jan 2023, Published online: 14 Feb 2023

References

  • Moraga P. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–1210. doi:10.1016/S0140-6736(17)32152-9
  • Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–1681. doi:10.1016/S0140-6736(10)61350-5
  • Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–2397. doi:10.1056/NEJMoa1410489
  • Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–1722. doi:10.1056/NEJMoa1615664
  • Bowman L, Hopewell JC, Chen F, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017;377:1217–1227. doi:10.1056/NEJMoa1706444
  • Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–1131. doi:10.1056/NEJMoa1707914
  • Bayat A, Azizi-Soleiman F, Heidari-Beni M, et al. Effect of Cucurbita ficifolia and probiotic yogurt consumption on blood glucose, lipid profile, and inflammatory marker in type 2 diabetes. Int J Prev Med. 2016;7:30. doi:10.4103/2008-7802.175455
  • Feng X, Zhang R, Li J, et al. Syringa pinnatifolia Hemsl. fraction protects against myocardial ischemic injury by targeting the p53-mediated apoptosis pathway. Phytomedicine. 2019;52:136–146. doi:10.1016/j.phymed.2018.09.188
  • Gaowa S, Bao N, Da M, et al. Traditional Mongolian medicine Eerdun Wurile improves stroke recovery through regulation of gene expression in rat brain. J Ethnopharmacol. 2018;222:249–260. doi:10.1016/j.jep.2018.05.011
  • Qiburi Q, Ganbold T, Bao Q, et al. Bioactive components of ethnomedicine Eerdun Wurile regulate the transcription of pro-inflammatory cytokines in microglia. J Ethnopharmacol. 2020;246:112241. doi:10.1016/j.jep.2019.112241
  • Ge H, Wang A, Su Y, et al. Ameliorative effects of Qingganjiuwei powder, a traditional Mongolian medicine, against CCl4-induced liver fibrosis in rats. J Ethnopharmacol. 2021;264:113226. doi:10.1016/j.jep.2020.113226
  • Gang H, Feng H, Huai S. Study on the hypolipidemic effect of Mongolian medicine Baolier capsules. Chin J Tradit Med. 2017;23:10. Chinese. doi:10.16041/j.cnki.cn15-1175.2017.10.042
  • Ahmed SS, Ramakrishnan V. Systems biological approach of molecular descriptors connectivity: optimal descriptors for oral bioavailability prediction. PLoS One. 2012;7:e40654. doi:10.1371/journal.pone.0040654
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D612. doi:10.1093/nar/gkaa1074
  • Caballero-Solares A, Hall JR. Reverse Transcription-Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) for gene expression analyses. Methods Mol Biol. 2022;2508:319–340.
  • Na S, Wu R, Chen X. Past present and future of treating angina pectoris with Mongolian medicine dialectics thinking. Chin J Cardiol Med. 2019;24:112–114. Chinese. doi:10.3969/j.issn.1007-5410.2019.02.005
  • Shi Y, Dun S, Chen D, et al. Bioactive compounds from Polygonatum genus as anti-diabetic agents with future perspectives. Food Chem. 2022;408:135183. doi:10.1016/j.foodchem.2022.135183
  • Carbone K, Gervasi F. An updated review of the genus Humulus: a valuable source of bioactive compounds for health and disease prevention. Plants. 2022;11(24):3434. doi:10.3390/plants11243434
  • Stefanucci A, Scioli G, MarinaccioA L, et al. Comparative study on phytochemical fingerprint of two diverse Phaseolus vulgaris var. Tondino del Tavo and Cannellino bio extracts. Antioxidants. 2022;11(8):1474. doi:10.3390/antiox11081474
  • Shen Y, Ward NC, Hodgson JM, et al. Dietary quercetin attenuates oxidant-induced endothelial dysfunction and atherosclerosis in apolipoprotein E knockout mice fed a high-fat diet: a critical role for heme oxygenase-1. Free Radic Biol Med. 2013;65:908–915. doi:10.1016/j.freeradbiomed.2013.08.185
  • Jiang YH, Jiang LY, Wang YC, et al. Quercetin attenuates atherosclerosis via modulating oxidized LDL-induced endothelial cellular senescence. Front Pharmacol. 2020;11:512. doi:10.3389/fphar.2020.00512
  • Luo M, Tian R, Lu N. Quercetin inhibited endothelial dysfunction and atherosclerosis in apolipoprotein E-deficient mice: critical roles for NADPH oxidase and heme oxygenase-1. J Agric Food Chem. 2020;68:10875–10883. doi:10.1021/acs.jafc.0c03907
  • Lin W, Wang W, Wang D. Quercetin protects against atherosclerosis by inhibiting dendritic cell activation. Mol Nutr Food Res. 2017;61. doi:10.1002/mnfr.201700031
  • Cao H, Jia Q, Yan L, et al. Quercetin suppresses the progression of atherosclerosis by regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 macrophage foam cells. Int J Mol Sci. 2019;20(23):6093. doi:10.3390/ijms20236093
  • Jia Q, Cao H, Shen D, et al. Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARgamma, LXRalpha and ABCA1. Int J Mol Med. 2019;44:893–902. doi:10.3892/ijmm.2019.4263
  • Garelnabi M, Mahini H, Wilson T. Quercetin intake with exercise modulates lipoprotein metabolism and reduces atherosclerosis plaque formation. J Int Soc Sports Nutr. 2014;11:22. doi:10.1186/1550-2783-11-22
  • Li SS, Cao H, Shen DZ, et al. Effect of quercetin on atherosclerosis based on expressions of ABCA1, LXR-alpha and PCSK9 in ApoE(-/-) Mice. Chin J Integr Med. 2020;26:114–121. doi:10.1007/s11655-019-2942-9
  • Lopez-Lazaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem. 2009;9:31–59. doi:10.2174/138955709787001712
  • Li J, Dong JZ, Ren YL, et al. Luteolin decreases atherosclerosis in LDL receptor-deficient mice via a mechanism including decreasing AMPK-SIRT1 signaling in macrophages. Exp Ther Med. 2018;16:2593–2599. doi:10.3892/etm.2018.6499
  • Ding X, Zheng L, Yang B, et al. Luteolin attenuates atherosclerosis via modulating signal transducer and activator of transcription 3-mediated inflammatory response. Drug Des Devel Ther. 2019;13:3899–3911. doi:10.2147/DDDT.S207185
  • Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, et al. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem. 2011;11:298–344. doi:10.2174/138955711795305335
  • Kong L, Luo C, Li X, et al. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits. Lipids Health Dis. 2013;12:115. doi:10.1186/1476-511X-12-115
  • Jourdan PS, McIntosh CA, Mansell RL. Naringin levels in citrus tissues: II. Quantitative distribution of naringin in citrus paradisi MacFad. Plant Physiol. 1985;77(4):903–908. doi:10.1104/pp.77.4.903
  • Mulvihill EE, Assini JM, Sutherland BG, et al. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol. 2010;30:742–748. doi:10.1161/ATVBAHA.109.201095
  • Assini JM, Mulvihill EE, Sutherland BG, et al. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr(-)/(-) mice. J Lipid Res. 2013;54:711–724. doi:10.1194/jlr.M032631
  • Burke AC, Sutherland BG, Telford DE, et al. Naringenin enhances the regression of atherosclerosis induced by a chow diet in Ldlr(-/-) mice. Atherosclerosis. 2019;286:60–70. doi:10.1016/j.atherosclerosis.2019.05.009
  • Orhan IE, Nabavi SF, Daglia M, et al. Naringenin and atherosclerosis: a review of literature. Curr Pharm Biotechnol. 2015;16:245–251. doi:10.2174/1389201015666141202110216
  • Tian XH, Wu JH. Tanshinone derivatives: a patent review (January 2006–September 2012). Expert Opin Ther Pat. 2013;23:19–29. doi:10.1517/13543776.2013.736494
  • Chen W, Li X, Guo S, et al. Tanshinone IIA harmonizes the crosstalk of autophagy and polarization in macrophages via miR-375/KLF4 pathway to attenuate atherosclerosis. Int Immunopharmacol. 2019;70:486–497. doi:10.1016/j.intimp.2019.02.054
  • Chen W, Guo S, Li X, et al. The regulated profile of noncoding RNAs associated with inflammation by tanshinone IIA on atherosclerosis. J Leukoc Biol. 2020;108:243–252. doi:10.1002/JLB.3MA0320-327RRR
  • Zhu J, Xu Y, Ren G, et al. Tanshinone IIA Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur J Pharmacol. 2017;815:427–436. doi:10.1016/j.ejphar.2017.09.047
  • Chen W, Tang F, Xie B, et al. Amelioration of atherosclerosis by tanshinone IIA in hyperlipidemic rabbits through attenuation of oxidative stress. Eur J Pharmacol. 2012;674:359–364. doi:10.1016/j.ejphar.2011.10.040
  • Tan YL, Ou HX, Zhang M, et al. Tanshinone IIA promotes macrophage cholesterol Efflux and attenuates atherosclerosis of apoE-/- mice by omentin-1/ABCA1 pathway. Curr Pharm Biotechnol. 2019;20:422–432. doi:10.2174/1389201020666190404125213
  • Tang FT, Cao Y, Wang TQ, et al. Tanshinone IIA attenuates atherosclerosis in ApoE(-/-) mice through down-regulation of scavenger receptor expression. Eur J Pharmacol. 2011;650:275–284. doi:10.1016/j.ejphar.2010.07.038
  • Omenn GS, Goodman GE, Thornquist MD, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996;334:1150–1155. doi:10.1056/NEJM199605023341802
  • Shaish A, Daugherty A, O’Sullivan F, et al. Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest. 1995;96:2075–2082. doi:10.1172/JCI118256
  • Luo Y, Sun G, Dong X, et al. Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PLoS One. 2015;10:e120259. doi:10.1371/journal.pone.0120259
  • Fernandez-Hernando C, Ackah E, Yu J, et al. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab. 2007;6:446–457. doi:10.1016/j.cmet.2007.10.007
  • Patino WD, Mian OY, Kang JG, et al. Circulating transcriptome reveals markers of atherosclerosis. Proc Natl Acad Sci U S A. 2005;102:3423–3428. doi:10.1073/pnas.0408032102
  • Chen Q, Lv J, Yang W, et al. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics. 2019;9:6424–6442. doi:10.7150/thno.35528
  • Guevara NV, Kim HS, Antonova EI, et al. The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat Med. 1999;5:335–339. doi:10.1038/6585
  • Hopkins PN. Molecular biology of atherosclerosis. Physiol Rev. 2013;93:1317–1542. doi:10.1152/physrev.00004.2012
  • Zeboudj L, Giraud A, Guyonnet L, et al. Selective EGFR (epidermal growth factor receptor) deletion in myeloid cells limits atherosclerosis-brief report. Arterioscler Thromb Vasc Biol. 2018;38:114–119. doi:10.1161/ATVBAHA.117.309927
  • Heinonen SE, Kivela AM, Huusko J, et al. The effects of VEGF-A on atherosclerosis, lipoprotein profile, and lipoprotein lipase in hyperlipidaemic mouse models. Cardiovasc Res. 2013;99:716–723. doi:10.1093/cvr/cvt148