370
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Network Pharmacology and Experimental Validation to Explore That Celastrol Targeting PTEN is the Potential Mechanism of Tripterygium wilfordii (Lév.) Hutch Against IgA Nephropathy

ORCID Icon, , , , , , , , , & show all
Pages 887-900 | Received 07 Jan 2023, Accepted 15 Mar 2023, Published online: 23 Mar 2023

References

  • Xu X, Wang G, Chen N, et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J Am Soc Nephrol. 2016;27(12):3739–3746. doi:10.1681/ASN.2016010093
  • O’Shaughnessy MM, Hogan SL, Thompson BD, Coppo R, Fogo AB, Jennette JC. Glomerular disease frequencies by race, sex and region: results from the International Kidney Biopsy Survey. Nephrol Dial Transplant. 2018;33(4):661–669. doi:10.1093/ndt/gfx189
  • Lai KN, Tang SC, Schena FP, et al. IgA nephropathy. Nat Rev Dis Primers. 2016;2:16001. doi:10.1038/nrdp.2016.1
  • Rovin BH, Adler SG, Barratt J, et al. KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 2021;100(4s):S1–S276. doi:10.1016/j.kint.2021.05.021
  • Wang XH, Lang R, Liang Y, Zeng Q, Chen N, Yu RH. Traditional Chinese medicine in treating IgA nephropathy: from basic science to clinical research. J Transl Int Med. 2021;9(3):161–167. doi:10.2478/jtim-2021-0021
  • Law SK, Simmons MP, Techen N, et al. Molecular analyses of the Chinese herb Leigongteng (Tripterygium wilfordii Hook.f.). Phytochemistry. 2011;72(1):21–26. doi:10.1016/j.phytochem.2010.10.015
  • Zhang X, Li N, Yao Y, et al. Identification of species in Tripterygium (Celastraceae) based on DNA barcoding. Biol Pharm Bull. 2016;39(11):1760–1766. doi:10.1248/bpb.b15-00956
  • Zhao J, Zhang F, Xiao X, et al. Tripterygium hypoglaucum (Lévl.) Hutch and its main bioactive components: recent advances in pharmacological activity, pharmacokinetics and potential toxicity. Front Pharmacol. 2021;12:715359. doi:10.3389/fphar.2021.715359
  • Tong X, Qiao Y, Yang Y, et al. Applications and mechanisms of Tripterygium wilfordii Hook. F. and its preparations in kidney diseases. Front Pharmacol. 2022;13:846746. doi:10.3389/fphar.2022.846746
  • Jiang Y, Zhong M, Long F, Yang R. Deciphering the active ingredients and molecular mechanisms of Tripterygium hypoglaucum (Levl.) Hutch against rheumatoid arthritis based on network pharmacology. Evid Based Complement Alternat Med. 2020;2020:2361865. doi:10.1155/2020/2361865
  • Li F, Han D, Wang B, et al. Topical treatment of colquhounia root relieves skin inflammation and itch in imiquimod-induced psoriasiform dermatitis in mice. Mediators Inflamm. 2022;2022:5782922. doi:10.1155/2022/5782922
  • Ma Z, Liu Y, Li C, Zhang Y, Lin N. Repurposing a clinically approved prescription Colquhounia root tablet to treat diabetic kidney disease via suppressing PI3K/AKT/NF-kB activation. Chin Med. 2022;17(1):2. doi:10.1186/s13020-021-00563-7
  • Zhu B, Wang Y, Jardine M, et al. Tripterygium preparations for the treatment of CKD: a systematic review and meta-analysis. Am J Kidney Dis. 2013;62(3):515–530. doi:10.1053/j.ajkd.2013.02.374
  • Hopkins AL. Network pharmacology. Nat Biotechnol. 2007;25(10):1110–1111. doi:10.1038/nbt1007-1110
  • Wei TF, Zhao L, Huang P, et al. Qing-Yi decoction in the treatment of acute pancreatitis: an integrated approach based on chemical profile, network pharmacology, molecular docking and experimental evaluation. Front Pharmacol. 2021;12:590994. doi:10.3389/fphar.2021.590994
  • Su X, Kong L, Lei X, Hu L, Ye M, Zou H. Biological fingerprinting analysis of traditional Chinese medicines with targeting ADME/Tox property for screening of bioactive compounds by chromatographic and MS methods. Mini Rev Med Chem. 2007;7(1):87–98. doi:10.2174/138955707779317830
  • Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43(Databaseissue):D789–D798. doi:10.1093/nar/gku1205
  • Fishilevich S, Zimmerman S, Kohn A, et al. Genic insights from integrated human proteomics in GeneCards. Database. 2016;2016:baw030. doi:10.1093/database/baw030
  • Martino E, Chiarugi S, Margheriti F, Garau G. Mapping, structure and modulation of PPI. Front Chem. 2021;9:718405. doi:10.3389/fchem.2021.718405
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131
  • Zhao L, Lan Z, Peng L, et al. Triptolide promotes autophagy to inhibit mesangial cell proliferation in IgA nephropathy via the CARD9/p38 MAPK pathway. Cell Prolif. 2022;55(9):e13278. doi:10.1111/cpr.13278
  • Pace S, Zhang K, Jordan PM, et al. Anti-inflammatory celastrol promotes a switch from leukotriene biosynthesis to formation of specialized pro-resolving lipid mediators. Pharmacol Res. 2021;167:105556. doi:10.1016/j.phrs.2021.105556
  • Xia M, Liu D, Tang X, et al. Dihydroartemisinin inhibits the proliferation of IgAN mesangial cells through the mTOR signaling pathway. Int Immunopharmacol. 2020;80:106125. doi:10.1016/j.intimp.2019.106125
  • Saikia S, Bordoloi M. Molecular docking: challenges, advances and its use in drug discovery perspective. Curr Drug Targets. 2019;20(5):501–521. doi:10.2174/1389450119666181022153016
  • O’Shaughnessy MM, Montez-Rath ME, Lafayette RA, Winkelmayer WC. Patient characteristics and outcomes by GN subtype in ESRD. Clin J Am Soc Nephrol. 2015;10(7):1170–1178. doi:10.2215/CJN.11261114
  • Huang X, Xu G. An update on targeted treatment of IgA nephropathy: an autoimmune perspective. Front Pharmacol. 2021;12:715253. doi:10.3389/fphar.2021.715253
  • Rodrigues JC, Haas M, Reich HN. IgA nephropathy. Clin J Am Soc Nephrol. 2017;12(4):677–686. doi:10.2215/CJN.07420716
  • Guo Y, Guo N, Wang J, Wang R, Tang L. Retrospective analysis of Tripterygium wilfordii polyglycoside combined with angiotensin receptor blockers for the treatment of primary membranous nephropathy with sub-nephrotic proteinuria. Ren Fail. 2021;43(1):729–736. doi:10.1080/0886022X.2021.1918555
  • Zhang H, Li X, Xu H, Ran F, Zhao G. Effect and safety evaluation of tacrolimus and tripterygium glycosides combined therapy in treatment of Henoch-Schönlein purpura nephritis. Int J Urol. 2021;28(11):1157–1163. doi:10.1111/iju.14665
  • Zhang M, Chen Y, Yang MJ, et al. Celastrol attenuates renal injury in diabetic rats via MAPK/NF-κB pathway. Phytother Res. 2019;33(4):1191–1198. doi:10.1002/ptr.6314
  • Ma ZJ, Zhang XN, Li L, et al. Tripterygium glycosides tablet ameliorates renal tubulointerstitial fibrosis via the toll-like receptor 4/nuclear factor kappa B signaling pathway in high-fat diet fed and streptozotocin-induced diabetic rats. J Diabetes Res. 2015;2015:390428. doi:10.1155/2015/390428
  • He L, Peng X, Liu G, et al. Anti-inflammatory effects of triptolide on IgA nephropathy in rats. Immunopharmacol Immunotoxicol. 2015;37(5):421–427. doi:10.3109/08923973.2015.1080265
  • Gao Q, Shen W, Qin W, et al. Treatment of db/db diabetic mice with triptolide: a novel therapy for diabetic nephropathy. Nephrol Dial Transplant. 2010;25(11):3539–3547. doi:10.1093/ndt/gfq245
  • Tamouza H, Chemouny JM, Raskova Kafkova L, et al. The IgA1 immune complex-mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney Int. 2012;82(12):1284–1296. doi:10.1038/ki.2012.192
  • Chen W, Yuan H, Cao W, et al. Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation. Theranostics. 2019;9(14):3980–3991. doi:10.7150/thno.32352
  • Cheng Y, Wang D, Wang F, et al. Endogenous miR-204 protects the kidney against chronic injury in hypertension and diabetes. J Am Soc Nephrol. 2020;31(7):1539–1554. doi:10.1681/ASN.2019101100
  • Zhou XJ, Tsoi LC, Hu Y, et al. Exome chip analyses and genetic risk for IgA nephropathy among Han Chinese. Clin J Am Soc Nephrol. 2021;16(2):213–224. doi:10.2215/CJN.06910520
  • Tang C, Ma Z, Zhu J, et al. P53 in kidney injury and repair: mechanism and therapeutic potentials. Pharmacol Ther. 2019;195:5–12. doi:10.1016/j.pharmthera.2018.10.013
  • Yakulov TA, Todkar AP, Slanchev K, et al. CXCL12 and MYC control energy metabolism to support adaptive responses after kidney injury. Nat Commun. 2018;9(1):3660. doi:10.1038/s41467-018-06094-4
  • Xia M, Liu D, Liu H, et al. Based on network pharmacology tools to investigate the mechanism of Tripterygium wilfordii against IgA nephropathy. Front Med. 2021;8:794962. doi:10.3389/fmed.2021.794962
  • Corson TW, Crews CM. Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell. 2007;130(5):769–774. doi:10.1016/j.cell.2007.08.021
  • Liu J, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U. Treatment of obesity with celastrol. Cell. 2015;161(5):999–1011. doi:10.1016/j.cell.2015.05.011
  • Chen X, Zhao Y, Luo W, et al. Celastrol induces ROS-mediated apoptosis via directly targeting peroxiredoxin-2 in gastric cancer cells. Theranostics. 2020;10(22):10290–10308. doi:10.7150/thno.46728
  • Wu Q, Wang J, Wang Y, et al. Targeted delivery of celastrol to glomerular endothelium and podocytes for chronic kidney disease treatment. Nano Res. 2022;15(4):3556–3568. doi:10.1007/s12274-021-3894-x
  • Sun Z, Li Y, Qian Y, et al. Celastrol attenuates ox-LDL-induced mesangial cell proliferation via suppressing NLRP3 inflammasome activation. Cell Death Discov. 2019;5:114. doi:10.1038/s41420-019-0196-0
  • Guo L, Luo S, Du Z, et al. Targeted delivery of celastrol to mesangial cells is effective against mesangioproliferative glomerulonephritis. Nat Commun. 2017;8(1):878. doi:10.1038/s41467-017-00834-8
  • Zhan X, Yan C, Chen Y, et al. Celastrol antagonizes high glucose-evoked podocyte injury, inflammation and insulin resistance by restoring the HO-1-mediated autophagy pathway. Mol Immunol. 2018;104:61–68. doi:10.1016/j.molimm.2018.10.021
  • Xiang G, Shi K, Wang J. Celastrol alleviates murine lupus nephritis via inducting CD4+Foxp3+ regulatory T cells. Folia Histochem Cytobiol. 2022;60(3):237–246. doi:10.5603/FHC.a2022.0020
  • Worby CA, Dixon JE. PTEN. Annu Rev Biochem. 2014;83:641–669. doi:10.1146/annurev-biochem-082411-113907
  • Chen JK, Nagai K, Chen J, et al. Phosphatidylinositol 3-kinase signaling determines kidney size. J Clin Invest. 2015;125(6):2429–2444. doi:10.1172/JCI78945
  • Li Y, Xia M, Peng L, et al. Downregulation of miR‑214-3p attenuates mesangial hypercellularity by targeting PTEN‑mediated JNK/c-Jun signaling in IgA nephropathy. Int J Biol Sci. 2021;17(13):3343–3355. doi:10.7150/ijbs.61274