515
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Antimicrobial Peptide Cec4 Eradicates Multidrug-Resistant Acinetobacter baumannii in vitro and in vivo

, , , , , , , , & show all
Pages 977-992 | Received 20 Jan 2023, Accepted 22 Mar 2023, Published online: 30 Mar 2023

References

  • Perez S, Innes GK, Walters MS, et al. Increase in hospital-acquired carbapenem-resistant Acinetobacter baumannii infection and colonization in an acute care hospital during a surge in COVID-19 admissions — New Jersey, February–July 2020. MMWR Morb Mortal Wkly Rep. 2020;69(48):1827–1831. doi:10.15585/mmwr.mm6948e1
  • Choi J, Jang A, Yoon YK, et al. Development of novel peptides for the antimicrobial combination therapy against carbapenem-resistant Acinetobacter baumannii infection. Pharmaceutics. 2021;13(11):11. doi:10.3390/pharmaceutics13111800
  • van Duin D, Kaye KS, Neuner EA, et al. Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis. 2013;75(2):115–120. doi:10.1016/j.diagmicrobio.2012.11.009
  • Sleiman A, Fayad AGA, Banna H, et al. Prevalence and molecular epidemiology of carbapenem-resistant Gram-negative bacilli and their resistance determinants in the Eastern Mediterranean Region over the last decade. J Glob Antimicrob Resist. 2021;25:209–221. doi:10.1016/j.jgar.2021.02.033
  • Bonomo RA, Burd EM, Conly J, et al. Carbapenemase-producing organisms: a global scourge. Clin Infect Dis. 2018;66(8):1290–1297. doi:10.1093/cid/cix893
  • Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30(2):557–596. doi:10.1128/CMR.00064-16
  • Srisakul S, Wannigama DL, Higgins PG, et al. Overcoming addition of phosphoethanolamine to lipid A mediated colistin resistance in Acinetobacter baumannii clinical isolates with colistin-sulbactam combination therapy. Sci Rep. 2022;12(1):11390. doi:10.1038/s41598-022-15386-1
  • Neshani A, Zare H, Akbari Eidgahi MR, et al. Review of antimicrobial peptides with anti- Helicobacter pylori activity. Helicobacter. 2019;24(1):e12555. doi:10.1111/hel.12555
  • da Costa de Souza G, Roque-Borda CA, Pavan FR. Beta-lactam resistance and the effectiveness of antimicrobial peptides against KPC-producing bacteria. Drug Dev Res. 2022;83(7):1534–1554. doi:10.1002/ddr.21990
  • Roque-Borda CA, Bento da Silva P, Rodrigues MC, et al. Pharmaceutical nanotechnology: antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem. 2022;241:114640. doi:10.1016/j.ejmech.2022.114640
  • Wang C, Zhao G, Wang S, et al. A simplified derivative of human defensin 5 with potent and efficient activity against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2018;62(2). doi:10.1128/AAC.01504-17
  • Vila-Farres X, Garcia de la Maria C, López-Rojas R, et al. In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii. Clin Microbiol Infect. 2012;18(4):383–387. doi:10.1111/j.1469-0691.2011.03581.x
  • Hazam PK, Cheng -C-C, Hsieh C-Y, et al. Development of bactericidal peptides against multidrug-resistant Acinetobacter baumannii with enhanced stability and low toxicity. Int J Mol Sci. 2022;23(4):2191. doi:10.3390/ijms23042191
  • Park HJ, Kang HK, Park E, et al. Bactericidal activities and action mechanism of the novel antimicrobial peptide Hylin a1 and its analog peptides against Acinetobacter baumannii infection. Eur J Pharm Sci. 2022;175:106205. doi:10.1016/j.ejps.2022.106205
  • Jariyarattanarach P, Klubthawee N, Wongchai M, et al. Novel D-form of hybrid peptide (D-AP19) rapidly kills Acinetobacter baumannii while tolerating proteolytic enzymes. Sci Rep. 2022;12(1):15852. doi:10.1038/s41598-022-20236-1
  • Neshani A, Sedighian H, Mirhosseini SA, et al. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microb Pathog. 2020;146:104238. doi:10.1016/j.micpath.2020.104238
  • Mwangi J, Yin Y, Wang G, et al. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci U S A. 2019;116(52):26516–26522. doi:10.1073/pnas.1909585117
  • Liu C, Qi J, Shan B, et al. Tachyplesin causes membrane instability that kills multidrug-resistant bacteria by inhibiting the 3-ketoacyl carrier protein reductase FabG. Front Microbiol. 2018;9:825. doi:10.3389/fmicb.2018.00825
  • Caraway HE, et al. Antimicrobial random peptide mixtures eradicate Acinetobacter baumannii biofilms and inhibit mouse models of infection. Antibiotics. 2022;11:3. doi:10.3390/antibiotics11030413
  • Peng J, Long H, Liu W, et al. Antibacterial mechanism of peptide Cec4 against Acinetobacter baumannii. Infect Drug Resist. 2019;12:2417–2428. doi:10.2147/IDR.S214057
  • Peng J, Wu Z, Liu W, et al. Antimicrobial functional divergence of the cecropin antibacterial peptide gene family in Musca domestica. Parasit Vectors. 2019;12(1):537. doi:10.1186/s13071-019-3793-0
  • Liu W, Wu Z, Mao C, et al. Antimicrobial peptide Cec4 eradicates the bacteria of clinical carbapenem-resistant Acinetobacter baumannii biofilm. Front Microbiol. 2020;11:1532. doi:10.3389/fmicb.2020.01532
  • Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163–175. doi:10.1038/nprot.2007.521
  • Barman S, Konai MM, Samaddar S, et al. Amino acid conjugated polymers: antibacterial agents effective against drug-resistant Acinetobacter baumannii with no detectable resistance. ACS Appl Mater Interfaces. 2019;11(37):33559–33572. doi:10.1021/acsami.9b09016
  • Liu Y, Jia Y, Yang K, et al. Metformin restores tetracyclines susceptibility against multidrug resistant bacteria. Adv Sci. 2020;7(12):1902227. doi:10.1002/advs.201902227
  • Shi J, Chen C, Wang D, et al. Amphipathic peptide antibiotics with potent activity against multidrug-resistant pathogens. Pharmaceutics. 2021;13(4):438. doi:10.3390/pharmaceutics13040438
  • Nagarajan D, Roy N, Kulkarni O, et al. Ω76: a designed antimicrobial peptide to combat carbapenem- and tigecycline-resistant Acinetobacter baumannii. Sci Adv. 2019;5(7):eaax1946. doi:10.1126/sciadv.aax1946
  • Mao C, Wang Y, Yang Y, et al. Cec4-derived peptide inhibits planktonic and biofilm-associated methicillin resistant Staphylococcus epidermidis. Microbiol Spectr. 2022;10(6):e0240922. doi:10.1128/spectrum.02409-22
  • Alkahtani J, Soliman Elshikh M, Almaary KS, et al. Anti-bacterial, anti-scavenging and cytotoxic activity of garden cress polysaccharides. Saudi J Biol Sci. 2020;27(11):2929–2935. doi:10.1016/j.sjbs.2020.08.014
  • Uccelletti D, Zanni E, Marcellini L, et al. Anti- Pseudomonas activity of frog skin antimicrobial peptides in a Caenorhabditis elegans infection model: a plausible mode of action in vitro and in vivo. Antimicrob Agents Chemother. 2010;54(9):3853–3860. doi:10.1128/aac.00154-10
  • Liu Y, Leung SSY, Guo Y, et al. The capsule depolymerase Dpo48 rescues Galleria mellonella and mice From Acinetobacter baumannii systemic infections. Front Microbiol. 2019;10:545. doi:10.3389/fmicb.2019.00545
  • Sahoo TK, Jena PK, Prajapati B, et al. In vivo assessment of immunogenicity and toxicity of the bacteriocin TSU4 in BALB/c mice. Probiotics Antimicrob Proteins. 2017;9(3):345–354. doi:10.1007/s12602-016-9249-3
  • Jayamani E, Rajamuthiah R, Larkins-Ford J, et al. Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model. Antimicrob Agents Chemother. 2015;59(3):1728–1737. doi:10.1128/aac.04198-14
  • Luca V, Olivi M, Di Grazia A, et al. Anti-Candida activity of 1-18 fragment of the frog skin peptide esculentin-1b: in vitro and in vivo studies in a Caenorhabditis elegans infection model. Cell Mol Life Sci. 2014;71(13):2535–2546. doi:10.1007/s00018-013-1500-4
  • Pastagia M, Euler C, Chahales P, et al. A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother. 2011;55(2):738–744. doi:10.1128/aac.00890-10
  • Thandar M, Lood R, Winer BY, et al. Novel engineered peptides of a phage lysin as effective antimicrobials against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(5):2671–2679. doi:10.1128/AAC.02972-15
  • Harris G, KuoLee R, Xu HH, et al. Mouse models of Acinetobacter baumannii infection. Curr Protoc Microbiol. 2017;46:6G 3 1–6G 3 23. doi:10.1002/cpmc.36
  • Mookherjee N, Anderson MA, Haagsman HP, et al. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020;19(5):311–332. doi:10.1038/s41573-019-0058-8
  • Greene NP, Kaplan E, Crow A, et al. Antibiotic resistance mediated by the MacB ABC Transporter family: a structural and functional perspective. Front Microbiol. 2018;9:950. doi:10.3389/fmicb.2018.00950
  • Majchrzykiewicz JA, Kuipers OP, Bijlsma JJ. Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin. Antimicrob Agents Chemother. 2010;54(1):440–451. doi:10.1128/aac.00769-09
  • Schroeder MR, Stephens DS. Macrolide resistance in Streptococcus pneumoniae. Front Cell Infect Microbiol. 2016;6:98. doi:10.3389/fcimb.2016.00098
  • Gupta P, Sothiselvam S, Vázquez-Laslop N, et al. Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nat Commun. 2013;4(1):1984. doi:10.1038/ncomms2984
  • Zhang Y, Tatsuno I, Okada R, et al. Predominant role of msr(D) over mef(A) in macrolide resistance in Streptococcus pyogenes. Microbiology. 2016;162(1):46–52. doi:10.1099/mic.0.000206
  • Karyne R, Curty Lechuga G, Almeida Souza AL, et al. Pan-drug resistant Acinetobacter baumannii, but not other strains, are resistant to the bee venom peptide mellitin. Antibiotics. 2020;9(4). doi:10.3390/antibiotics9040178
  • Palmer T, Stansfeld PJ. Targeting of proteins to the twin-arginine translocation pathway. Mol Microbiol. 2020;113(5):861–871. doi:10.1111/mmi.14461
  • Xu X, Chen J, Huang X, et al. The role of a dipeptide transporter in the virulence of human pathogen, Helicobacter pylori. Front Microbiol. 2021;12:633166. doi:10.3389/fmicb.2021.633166
  • Singkham-In U, Higgins PG, Wannigama DL, et al. Rescued chlorhexidine activity by resveratrol against carbapenem-resistant Acinetobacter baumannii via down-regulation of AdeB efflux pump. PLoS One. 2020;15(12):e0243082. doi:10.1371/journal.pone.0243082
  • Feng X, Sambanthamoorthy K, Palys T, et al. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides. 2013;49:131–137. doi:10.1016/j.peptides.2013.09.007
  • de Breij A, Riool M, Cordfunke RA, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med. 2018;10(423):423. doi:10.1126/scitranslmed.aan4044
  • Mwangi J, Yin Y, Wang G, et al. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci U S A. 2019;116(52):26516–26522. doi:10.1073/pnas.1909585117
  • Jangra M, Raka V, Nandanwar H. In vitro evaluation of antimicrobial peptide Tridecaptin M in combination with other antibiotics against multidrug resistant Acinetobacter baumannii. Molecules. 2020;25(14):3255. doi:10.3390/molecules25143255