535
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Informatics on Drug Repurposing for Breast Cancer

, , , ORCID Icon &
Pages 1933-1943 | Received 17 Apr 2023, Accepted 17 Jun 2023, Published online: 28 Jun 2023

References

  • Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58. doi:10.1038/nrd.2018.168
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi:10.3322/caac.21492
  • Arora S, Narayan P, Osgood CL, et al. U.S. FDA drug approvals for breast cancer: a decade in review. Clin Cancer Res. 2022;28:1072–1086. doi:10.1158/1078-0432.CCR-21-2600
  • Yam C, Mani SA, Moulder SL. Targeting the molecular subtypes of triple negative breast cancer: understanding the diversity to progress the field. Oncologist. 2017;22:1086–1093. doi:10.1634/theoncologist.2017-0095
  • Aggarwal S, Verma SS, Aggarwal S, Gupta SC. Drug repurposing for breast cancer therapy: old weapon for new battle. Semin Cancer Biol. 2021;68:8–20. doi:10.1016/j.semcancer.2019.09.012
  • Malik JA, Ahmed S, Jan B, et al. Drugs repurposed: an advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother. 2022;145:112375. doi:10.1016/j.biopha.2021.112375
  • Mottini C, Napolitano F, Li Z, Gao X, Cardone L. Computer-aided drug repurposing for cancer therapy: approaches and opportunities to challenge anticancer targets. Semin Cancer Biol. 2021;68:59–74. doi:10.1016/j.semcancer.2019.09.023
  • Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R. ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015;12:573–583. doi:10.1038/nrclinonc.2015.117
  • Busonero C, Leone S, Bianchi F, Acconcia F. In silico screening for ERalpha down modulators identifies thioridazine as an anti-proliferative agent in primary, 4OH-tamoxifen-resistant and Y537S ERalpha-expressing breast cancer cells. Cell Oncol. 2018;41:677–686.
  • Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171:1437–52 e17. doi:10.1016/j.cell.2017.10.049
  • Vasquez-Bochm LX, Velazquez-Paniagua M, Castro-Vazquez SS, et al. Transcriptome-based identification of lovastatin as a breast cancer stem cell-targeting drug. Pharmacol Rep. 2019;71:535–544. doi:10.1016/j.pharep.2019.02.011
  • Nguyen TM, Muhammad SA, Ibrahim S, et al. DeCoST: a new approach in drug repurposing from control system theory. Front Pharmacol. 2018;9:583. doi:10.3389/fphar.2018.00583
  • Musa A, Ghoraie LS, Zhang SD, et al. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform. 2017;18:903. doi:10.1093/bib/bbx023
  • Chan J, Wang X, Turner JA, Baldwin NE, Gu J. Breaking the paradigm: Dr Insight empowers signature-free, enhanced drug repurposing. Bioinformatics. 2019;35:2818–2826. doi:10.1093/bioinformatics/btz006
  • Mejia-Pedroza RA, Espinal-Enriquez J, Hernandez-Lemus E. Pathway-based drug repositioning for breast cancer molecular subtypes. Front Pharmacol. 2018;9:905. doi:10.3389/fphar.2018.00905
  • Griffith M, Griffith OL, Coffman AC, et al. DGIdb: mining the druggable genome. Nat Methods. 2013;10:1209–1210. doi:10.1038/nmeth.2689
  • Ding S, Chen X, Shen K. Single-cell RNA sequencing in breast cancer: understanding tumor heterogeneity and paving roads to individualized therapy. Cancer Commun. 2020;40:329–344. doi:10.1002/cac2.12078
  • Yuan X, Wang J, Huang Y, Shangguan D, Zhang P. Single-cell profiling to explore immunological heterogeneity of tumor microenvironment in breast cancer. Front Immunol. 2021;12:643692. doi:10.3389/fimmu.2021.643692
  • He B, Xiao Y, Liang H, et al. ASGARD is a single-cell guided pipeline to aid repurposing of drugs. Nat Commun. 2023;14:993. doi:10.1038/s41467-023-36637-3
  • Greene CS, Voight BF. Pathway and network-based strategies to translate genetic discoveries into effective therapies. Hum Mol Genet. 2016;25:R94–R8. doi:10.1093/hmg/ddw160
  • Ma J, Wang J, Ghoraie LS, Men X, Haibe-Kains B, Dai P. A comparative study of cluster detection algorithms in protein-protein interaction for drug target discovery and drug repurposing. Front Pharmacol. 2019;10:109. doi:10.3389/fphar.2019.00109
  • Turanli B, Karagoz K, Bidkhori G, et al. Multi-omic data interpretation to repurpose subtype specific drug candidates for breast cancer. Front Genet. 2019;10:420. doi:10.3389/fgene.2019.00420
  • Duan Q, Reid SP, Clark NR, et al. L1000CDS(2): LINCS L1000 characteristic direction signatures search engine. NPJ Syst Biol Appl. 2016;2:16015. doi:10.1038/npjsba.2016.15
  • Peyvandipour A, Saberian N, Shafi A, Donato M, Draghici S. A novel computational approach for drug repurposing using systems biology. Bioinformatics. 2018;34:2817–2825. doi:10.1093/bioinformatics/bty133
  • Firoozbakht F, Rezaeian I, Rueda L, Ngom A. Computationally repurposing drugs for breast cancer subtypes using a network-based approach. BMC Bioinform. 2022;23:143. doi:10.1186/s12859-022-04662-6
  • Islam MM, Wang Y, Hu P. A maximum flow-based approach to prioritize drugs for drug repurposing of chronic diseases. Life. 2021;11:54.
  • Saha Detroja T, Detroja R, Mukherjee S, Samson AO. Identifying hub genes associated with neoadjuvant chemotherapy resistance in breast cancer and potential drug repurposing for the development of precision medicine. Int J Mol Sci. 2022;23:12628. doi:10.3390/ijms232012628
  • Di J, Zheng B, Kong Q, et al. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities. Mol Oncol. 2019;13:2259–2277. doi:10.1002/1878-0261.12564
  • Al-Taie Z, Hannink M, Mitchem J, Papageorgiou C, Shyu CR. Drug repositioning and subgroup discovery for precision medicine implementation in triple negative breast cancer. Cancers. 2021;13:6278. doi:10.3390/cancers13246278
  • Hsu JL, Hung MC. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev. 2016;35:575–588. doi:10.1007/s10555-016-9649-6
  • Balbuena-Rebolledo I, Padilla M, Rosales-Hernandez MC, Bello M. Repurposing FDA drug compounds against breast cancer by targeting EGFR/HER2. Pharmaceuticals. 2021;14:791. doi:10.3390/ph14080791
  • Kandasamy T, Sen P, Ghosh SS. Multi-targeted drug repurposing approach for breast cancer via integrated functional network analysis. Mol Inform. 2022;41:e2100300. doi:10.1002/minf.202100300
  • Olsauskas-Kuprys R, Zlobin A, Osipo C. Gamma secretase inhibitors of Notch signaling. Onco Targets Ther. 2013;6:943–955. doi:10.2147/OTT.S33766
  • Pathak Y, Camps I, Mishra A, Tripathi V. Targeting notch signaling pathway in breast cancer stem cells through drug repurposing approach. Mol Divers. 2022. doi:10.1007/s11030-022-10561-y
  • Rui M, Cai M, Zhou Y, et al. Identification of potential RBPJ-specific inhibitors for blocking notch signaling in breast cancer using a drug repurposing strategy. Pharmaceuticals. 2022;15:556. doi:10.3390/ph15050556
  • Maruca A, Rocca R, Catalano R, et al. Natural products extracted from fungal species as new potential anti-cancer drugs: a structure-based drug repurposing approach targeting HDAC7. Molecules. 2020;25:5524. doi:10.3390/molecules25235524
  • Issa NT, Stathias V, Schurer S, Dakshanamurthy S. Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol. 2021;68:132–142. doi:10.1016/j.semcancer.2019.12.011
  • Song J, Xu Z, Cao L, Wang M, Hou Y, Li K. The discovery of new drug-target interactions for breast cancer treatment. Molecules. 2021;26:7474. doi:10.3390/molecules26247474
  • You J, McLeod RD, Hu P. Predicting drug-target interaction network using deep learning model. Comput Biol Chem. 2019;80:90–101. doi:10.1016/j.compbiolchem.2019.03.016
  • Cui C, Ding X, Wang D, et al. Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug-drug links based on graph neural network. Bioinformatics. 2021;37:2930–2937. doi:10.1093/bioinformatics/btab191
  • Wang A, Lim H, Cheng SY, Xie L. ANTENNA, a multi-rank, multi-layered recommender system for inferring reliable drug-gene-disease associations: repurposing diazoxide as a targeted anti-cancer therapy. IEEE/ACM Trans Comput Biol Bioinform. 2018;15:1960–1967. doi:10.1109/TCBB.2018.2812189
  • Ji X, Jin C, Dong X, Dixon MS, Williams KP, Zheng W. Literature-wide association studies (LWAS) for a rare disease: drug repurposing for inflammatory breast cancer. Molecules. 2020;25:3933. doi:10.3390/molecules25173933
  • Malik JA, Ahmed S, Momin SS, et al. Drug repurposing: a new hope in drug discovery for prostate cancer. ACS Omega. 2023;8:56–73. doi:10.1021/acsomega.2c05821
  • Luck K, Kim DK, Lambourne L, et al. A reference map of the human binary protein interactome. Nature. 2020;580:402–408. doi:10.1038/s41586-020-2188-x
  • Kairys V, Baranauskiene L, Kazlauskiene M, Matulis D, Kazlauskas E. Binding affinity in drug design: experimental and computational techniques. Expert Opin Drug Discov. 2019;14:755–768. doi:10.1080/17460441.2019.1623202
  • Melnekoff DT, Lagana A. Single-cell sequencing technologies in precision oncology. Adv Exp Med Biol. 2022;1361:269–282.
  • Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Perin O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci. 2022;9:962799.