322
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Recent Advances in the Nanoshells Approach for Encapsulation of Single Probiotics

&
Pages 2763-2774 | Received 04 May 2023, Accepted 16 Aug 2023, Published online: 08 Sep 2023

References

  • Fredrik B, Ruth EL, Justin LS, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–1920. doi:10.1126/science.1104816
  • Wang XQ, Zhang AH, Miao JH, et al. Gut microbiota as important modulator of metabolism in health and disease. Rsc Adv. 2018;8(74):42380–42389. doi:10.1039/c8ra08094a
  • James LA, Ian DW, Julian T, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–365. doi:10.1038/nrgastro.2017.20
  • Taekil E, Yong SK, Chang HC, et al. Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease. J Microbiol. 2018;56(3):189–198. doi:10.1007/s12275-018-8049-8
  • Louis HSL, Sunny HW. Microbiota, Obesity and NAFLD. Adv Exp Med Biol. 2018;1061:111–125. doi:10.1007/978-981-10-8684-7_9
  • Willem MDV, Herbert T, Matthias VH, et al. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020–1032. doi:10.1136/gutjnl-2021-326789
  • Abbas MS, Afzaal M, Saeed F, et al. Probiotic viability as affected by encapsulation materials: recent updates and perspectives. Int J Food Properties. 2023;26(1):1324–1350. doi:10.1080/10942912.2023.2213408
  • Montoya-soto JG, González-Laredo RF, Medina-Torres L, et al. Recent developments on wall materials for the microencapsulation of probiotics: a review. Tecnociencia Chihuahua. 2023;1(4):2683–3360. doi:10.54167/tch.v17i1.1140
  • Kourosh KZ, Kyle JB, Rebecca EB, et al. Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat Rev Gastroenterol Hepatol. 2019;16(12):733–747. doi:10.1038/s41575-019-0193-z
  • Kourosh KZ, Stephanie AW, Kamyar KZ, et al. Considering the Effects of Microbiome and Diet on SARS-CoV-2 Infection: nanotechnology Roles. ACS Nano. 2020;14(5):5179–5182. doi:10.1021/acsnano.0c03402
  • Aaron CA, Kevin JM, Jamie W, et al. Layer-by-Layer Encapsulation of Probiotics for Delivery to the Microbiome. Adv Mater. 2016;28(43):9486–9490. doi:10.1002/adma.201603270
  • Li ZH, Adam MB, Nitzan G, et al. Biofilm-Inspired Encapsulation of Probiotics for the Treatment of Complex Infections. Adv Mater. 2018;30(51):e1803925. doi:10.1002/adma.201803925
  • Wang YT, Tang Y, Du Y, et al. Genetically engineered bacteria-mediated multi-functional nanoparticles for synergistic tumor-targeting therapy. Acta Biomater. 2022;150:337–352. doi:10.1016/j.actbio.2022.07.056
  • Lee H, Kim N, Hyeong BR, et al. A Decade of Advances in Single-Cell Nanocoating for Mammalian Cells. Adv Healthc Mater. 2021;10(13):e2100347. doi:10.1002/adhm.202100347
  • Jacob DP, Emma P, Beth AM, et al. Engineered Probiotic for the Inhibition of Salmonella via Tetrathionate-Induced Production of Microcin H47. ACS Infect Dis. 2018;4(1):39–45. doi:10.1021/acsinfecdis.7b00114
  • Caroline BK, Yves AM, Marja KP, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 2019;11(475):eaau7975. doi:10.1126/scitranslmed.aau7975
  • Himanshu KS, Dipak DP, Dushyant AS, et al. Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. Biomed Res Int. 2013;2013:620719. doi:10.1155/2013/620719
  • Kenneth T, James KT, Harald B, et al. Synthetic consortia of nanobody-coupled and formatted bacteria for prophylaxis and therapy interventions targeting microbiome dysbiosis-associated diseases and co-morbidities. Microb Biotechnol. 2019;12(1):58–65. doi:10.1111/1751-7915.13355
  • Cornelius CD, Wang J, Abdul WB, et al. Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation. Int J Pharm. 2017;530(1–2):224–229. doi:10.1016/j.ijpharm.2017.07.068
  • Kong SS, Zhang YHH, Zhang WQ. Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids. Biomed Res Int. 2018;2018:2819154. doi:10.1155/2018/2819154
  • Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411–420. doi:10.1038/nri2316
  • Wang MM, Yang J, Li M, et al. Enhanced viability of layer-by-layer encapsulated Lactobacillus pentosus using chitosan and sodium phytate. Food Chem. 2019;285:260–265. doi:10.1016/j.foodchem.2019.01.162
  • Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575. doi:10.1038/nrmicro.2016.94
  • Yan J, Bassler BL. Surviving as a Community: antibiotic Tolerance and Persistence in Bacterial Biofilms. Cell Host Microbe. 2019;26(1):15–21. doi:10.1016/j.chom.2019.06.002
  • Franco C, Abdul WB, Liu JY, et al. Nanoencapsulation for Probiotic Delivery. ACS Nano. 2021;15(12):18653–18660. doi:10.1021/acsnano.1c09951
  • Choi YH, Phan B. Methods and Applications of Biomolecular Surface Coatings on Individual Cells. ACS Appl Bio Mater. 2020;3(10):6556–6570. doi:10.1021/acsabm.0c00867
  • Fischer D, Li YX, Barbara A, et al. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121–1131. doi:10.1016/s0142-9612(02)00445-3
  • Germain M, Balaguer P, Nicolas JC, et al. Protection of mammalian cell used in biosensors by coating with a polyelectrolyte shell. Biosens Bioelectron. 2006;21(8):1566–1573. doi:10.1016/j.bios.2005.07.011
  • Michael TC, George T, Vitaliy VK, et al. Layer-by-layer coating of alginate matrices with chitosan-alginate for the improved survival and targeted delivery of probiotic bacteria after oral administration. J Mater Chem B. 2013;1(1):52–60. doi:10.1039/c2tb00126h
  • Jeong HJ, Hwang JS, Lee H, et al. In vitro blood cell viability profiling of polymers used in molecular assembly. Sci Rep. 2017;7(1):9481. doi:10.1038/s41598-017-10169-5
  • Zhou JY, James WY, Sung WK, et al. Intracellular kinetics of non-viral gene delivery using polyethylenimine carriers. Pharm Res. 2007;24(6):1079–1087. doi:10.1007/s11095-006-9229-5
  • Haesslein A, Ueda H, Hacker MC, et al. Long-term release of fluocinolone acetonide using biodegradable fumarate-based polymers. J Controlled Release. 2006;114(2):251–260. doi:10.1016/j.jconrel.2006.05.024
  • Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–430. doi:10.1126/science.1147241
  • Ejima H, Richardson JJ, Laing K, et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science. 2013;341(6412):154–157. doi:10.1126/science.1237265
  • Yang J, Martien ACS, Marleen K. Jack of all trades: versatile catechol crosslinking mechanisms. Chem Soc Rev. 2014;43(24):8271–8298. doi:10.1039/c4cs00185k
  • Leonhard M. The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Front Cell Dev Biol. 2020;8:253.
  • Zhou JJ, Lin ZX, Ju Y, et al. Polyphenol-Mediated Assembly for Particle Engineering. Acc Chem Res. 2020;53(7):1269–1278. doi:10.1021/acs.accounts.0c00150
  • Sileika TS, Barrett DG, Zhang R, et al. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew Chem Int Ed. 2013;52(41):10766–10770. doi:10.1002/anie.201304922
  • Mikko S, Lauri M, Henri K, et al. Effects of pH and Oxidants on the First Steps of Polydopamine Formation: a Thermodynamic Approach. J Phys Chem B. 2018;122(24):6314–6327. doi:10.1021/acs.jpcb.8b02304
  • Lauren DP, Eric PS. Transition Metals and Virulence in Bacteria. Annu Rev Genet. 2016;50:67–91. doi:10.1146/annurev-genet-120215-035146
  • Mikko S, Matti T, Timo P, et al. Preparation of Thin Melanin-Type Films by Surface-Controlled Oxidation. Langmuir. 2016;32(16):4103–4112. doi:10.1021/acs.langmuir.6b00402
  • Franco C, Salma M, Mahroo B, et al. Cell-Mediated Biointerfacial Phenolic Assembly for Probiotic Nano Encapsulation. Adv Funct Mater. 2022;32:2200775. doi:10.1002/adfm.202200775
  • Geng J, Li WS, Zhang YC, et al. Radical polymerization inside living cells. Nat Chem. 2019;11(6):578–586. doi:10.1038/s41557-019-0240-y
  • Liu YY, Yan GQ, Gao MX, et al. Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins. J Proteomics. 2018;172:76–81. doi:10.1016/j.jprot.2017.10.009
  • Ju KY, Lee YW, Lee SH, et al. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules. 2011;12:625–632. doi:10.1021/bm101281b
  • Kim JY, Lee HJ, Park TY, et al. Artificial Spores: cytocompatible Coating of Living Cells with Plant-Derived Pyrogallol. Chem Asian J. 2016;11(22):3183–3187. doi:10.1002/asia.201601237
  • Kim BJ, Han S, Lee KB, et al. Biphasic Supramolecular Self-Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation. Adv Mater. 2017;29(28):1700784. doi:10.1002/adma.201700784
  • Kim MJ, Yeo JS, Highley CB, et al. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE). ACS Nano. 2015;9:8269–8278. doi:10.1021/acsnano.5b02702
  • Guo JL, Ping Y, Ejima H, et al. Engineering Multifunctional Capsules through the Assembly of Metal-Phenolic Networks. Angew Chem Int Edit. 2014;53(22):5546–5551. doi:10.1002/anie.201311136
  • Yang YF, Wang FW, Yang Q, et al. Hollow metal-organic framework nanospheres via emulsion-based interfacial synthesis and their application in size-selective catalysis. ACS Appl Mater Interfaces. 2014;6(20):18163–18171. doi:10.1021/am505145d
  • Wilker JJ. The iron-fortified adhesive system of marine mussels. Angew Chem Int Ed. 2010;49(44):8076–8078. doi:10.1002/anie.201003171
  • Park JH, Kim KH, Lee J, et al. A cytoprotective and degradable metal-polyphenol nanoshells for single-cell encapsulation. Angew Chem Int Ed. 2014;53(46):12420–12425. doi:10.1002/anie.201405905
  • Lee HJ, Park J, Han SY, et al. Ascorbic acid-mediated reductive disassembly of Fe3+-tannic acid shells in degradable single-cell nanoencapsulation. Chem Commun (Camb). 2020;56(89):13748–13751. doi:10.1039/d0cc05856d
  • McKenney PT, Driks A, Eichenberger P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol. 2013;11(1):33–44. doi:10.1038/nrmicro2921
  • Chen JH, Gao P, Yuan SJ, et al. Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy. ACS Nano. 2016;10(12):11548–11560. doi:10.1021/acsnano.6b06182
  • Pinlla CMB, Lopes NA, Brandelli A. Liposome-mediated encapsulation of antimicrobials and probiotics. Liposomal Encapsulation Food Sci Technol. 2023;10(6):966–976. doi:10.1016/B978-0-12-823935-3.00011-4
  • Fang ZZ, Yang EL, Du Y, et al. Biomimetic smart nanoplatform for dual imaging-guided synergistic cancer therapy. J Mater Chem B. 2022;10(6):966–976. doi:10.1039/d1tb02306c
  • Li SY, Cheng H, Xie BR, et al. Cancer Cell Membrane Camouflaged Cascade Bioreactor for Cancer Targeted Starvation and Photodynamic Therapy. ACS Nano. 2017;11(7):7006–7018. doi:10.1021/acsnano.7b02533
  • Fang ZZ, Zhu ZY, Zhuang ZJ, et al. Cascade biomimetic intelligent nanotheranostic agents for imaging-guided tumor synergistic therapy. Nanomedicine. 2023;18(1):35–52. doi:10.2217/nnm-2022-0266
  • Cao ZP, Cheng SS, Wang XY, et al. Camouflaging bacteria by wrapping with cell membranes. Nat Commun. 2019;10(1):3452. doi:10.1038/s41467-019-11390-8
  • Biou V. Lipid-membrane protein interaction visualised by cryo-EM: a review. Biochim Biophys Acta Biomembr. 2022;13(1):184068. doi:10.1016/j.bbamem.2022.184068
  • Sardar A, Dewangan N, Panda B, et al. Lipid and Lipidation in Membrane Fusion. J Membr Biol. 2022;255(6):691–703. doi:10.1007/s00232-022-00267-5
  • Cao ZP, Wang XY, Pang Y, et al. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat Commun. 2019;10(1):5783. doi:10.1038/s41467-019-13727-9
  • Martina SC, Nuccio SP, Liu H, et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature. 2016;540(7632):280–283. doi:10.1038/nature20557
  • Guo JL, Miguel S, Kelsey KS, et al. Light-driven fine chemical production in yeast biohybrids. Science. 2018;362(6416):813–816. doi:10.1126/science.aat9777
  • Kieran RC, Christopher Y. Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data. Nat Commun. 2018;9:2442.
  • Okamoto Y, Kojima R, Schwizer F, et al. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat Commun. 2018;9(1):1943. doi:10.1038/s41467-018-04440-0
  • Su DY, Qi JR, Liu XM, et al. Enzyme-Modulated Anaerobic Encapsulation of Chlorella Cells Allows Switching from O2 to H2 Production. Angew Chem Int Ed. 2019;58(12):3992–3995. doi:10.1002/anie.201900255