181
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

How Tongxie-Yaofang Regulates Intestinal Synaptic Plasticity by Activating Enteric Glial Cells and NGF/TrkA Pathway in Diarrhea-Predominant Irritable Bowel Syndrome Rats

&
Pages 2969-2983 | Received 20 Jun 2023, Accepted 19 Sep 2023, Published online: 27 Sep 2023

References

  • Mearin F, Lacy BE, Chang L, et al. Bowel disorders. Gastroenterology. 2016;150(16):1393–1407. doi:10.1053/j.gastro.2016.02.031
  • Oka P, Parr H, Barberio B, Black CJ, Savarino EV, Ford AC. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(10):908–917. doi:10.1016/S2468-1253(20)30217-X
  • Sperber AD, Bangdiwala SI, Drossman DA, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome foundation global study. Gastroenterology. 2021;160(1):99–114.e3. doi:10.1053/j.gastro.2020.04.014
  • Liu J, Hou X. A review of the irritable bowel syndrome investigation on epidemiology, pathogenesis and pathophysiology in China. J Gastroenterol Hepatol. 2011;26(Suppl s3):88–93. doi:10.1111/j.1440-1746.2011.06641.x
  • Bonetto S, Fagoonee S, Battaglia E, Grassini M, Saracco GM, Pellicano R. Recent advances in the treatment of irritable bowel syndrome. Pol Arch Intern Med. 2021;131(7–8):709–715. doi:10.20452/pamw.16067
  • Xu W, Zhang Z, Lu Y, Li M, Li J, Tao W. Traditional Chinese medicine Tongxie Yaofang treating irritable bowel syndrome with diarrhea and type 2 diabetes mellitus in rats with liver-depression and spleen-deficiency: a preliminary study. Front Nutr. 2022;9:968930. doi:10.3389/fnut.2022.968930
  • Chen X, Yu X, Shi Y, Shen H. Overview of systematic evaluation of efficacy of Tongxie Yaofang in treating diarrhea-predominant irritable bowel syndrome. Ann Palliat Med. 2021;10(8):9223–9232. doi:10.21037/apm-21-1612
  • Hadjivasilis A, Tsioutis C, Michalinos A, Ntourakis D, Christodoulou DK, Agouridis AP. New insights into irritable bowel syndrome: pathophysiology to treatment. Ann Gastroenterol. 2019;32(6):554–564. doi:10.20524/aog.2019.0428
  • Hou Q, Huang Y, Zhu Z, et al. Tong-Xie-Yao-Fang improves intestinal permeability in diarrhoea-predominant irritable bowel syndrome rats by inhibiting the NF-κB and notch signalling pathways. BMC Complement Altern Med. 2019;19(1):337. doi:10.1186/s12906-019-2749-4
  • Yang X, Sheng L, Guan Y, Qian W, Hou X. Synaptic plasticity: the new explanation of visceral hypersensitivity in rats with Trichinella spiralis infection? Dig Dis Sci. 2009;54(5):937–946. doi:10.1007/s10620-008-0444-2
  • López-Pérez AE, Nurgali K, Abalo R. Painful neurotrophins and their role in visceral pain. Behav Pharmacol. 2018;29(2–3):120–139. doi:10.1097/FBP.0000000000000386
  • Morales-Soto W, Gulbransen BD. Enteric glia: a new player in abdominal pain. Cell Mol Gastroenterol Hepatol. 2019;7(2):433–445. doi:10.1016/j.jcmgh.2018.11.005
  • Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24(5):101–105. doi:10.21315/mjms2017.24.5.11
  • Percie du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Br J Pharmacol. 2020;177(16):3617–3624. doi:10.1111/bph.15193
  • Wu H, Zhan K, Rao K, et al. Comparison of five diarrhea-predominant irritable bowel syndrome (IBS-D) rat models in the brain-gut-microbiota axis. Biomed Pharmacother. 2022;149:112811. doi:10.1016/j.biopha.2022.112811
  • Li L, Cui H, Li T, et al. Synergistic effect of berberine-based Chinese medicine assembled nanostructures on diarrhea-predominant irritable bowel syndrome in vivo. Front Pharmacol. 2020;11:1210. doi:10.3389/fphar.2020.01210
  • Qi DB, Zhang SH, Zhang YH, Wu SQ, Li WM. A rat model for studying electroacupuncture analgesia on acute visceral hyperalgesia. Exp Anim. 2018;67(1):51–61. doi:10.1538/expanim.17-0063
  • Chen L, Wang Y, Li S, Zhou W, Sun L. High expression of NDRG3 in osteoarthritis patients. Arthroplasty. 2021;3(1):1. doi:10.1186/s42836-020-00064-2
  • Zhang L, Song J, Bai T, Wang R, Hou X. Sustained pain hypersensitivity in the stressed colon: role of mast cell-derived nerve growth factor-mediated enteric synaptic plasticity. Neurogastroenterol Motil. 2018;30(9):e13430. doi:10.1111/nmo.13430
  • Nasser Y, Fernandez E, Keenan CM, et al. Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function. Am J Physiol Gastrointest Liver Physiol. 2006;291(5):G912–927. doi:10.1152/ajpgi.00067.2006
  • Simrén M, Törnblom H, Palsson OS, Van Oudenhove L, Whitehead WE, Tack J. Cumulative effects of psychologic distress, visceral hypersensitivity, and abnormal transit on patient-reported outcomes in irritable bowel syndrome. Gastroenterology. 2019;157(2):391–402.e2. doi:10.1053/j.gastro.2019.04.019
  • Zhao Y, Jiang H-L, Shi Y, et al. Electroacupuncture alleviates visceral hypersensitivity in IBS-D rats by inhibiting EGCs Activity through regulating BDNF/TrkB signaling pathway. Evid Based Complement Alternat Med. 2022;2022:2497430. doi:10.1155/2022/2497430
  • Deng ZJ. Formulas of Chinese Medicine. Beijing, China: Chinese Press of Traditional Chinese Medicine; 2010.
  • Liang SB, Cao HJ, Kong LY, et al. Systematic review and meta-analysis of Chinese herbal formula Tongxie Yaofang for diarrhea-predominant irritable bowel syndrome: evidence for clinical practice and future trials. Front Pharmacol. 2022;13:904657. doi:10.3389/fphar.2022.904657
  • Lin Y, Ding Y, B L, Liu N. Effect of Tongxieyaofang decoction on colonic mucosal protein expression profiles in rats with visceral hypersensitivity. J Tradit Chin Med. 2020;40(2):245–252.
  • Aziz MNM, Kumar J, Muhammad Nawawi KN, Raja Ali RA, Mokhtar NM. Irritable bowel syndrome, depression, and neurodegeneration: a bidirectional communication from gut to brain. Nutrients. 2021;13(9):3061. doi:10.3390/nu13093061
  • Kulkarni S, Ganz J, Bayrer J, et al. Advances in enteric neurobiology: the “Brain” in the gut in health and disease. J Neurosci. 2018;38(44):9346–9354. doi:10.1523/JNEUROSCI1663-18.2018
  • Grubišić V, Gulbransen BD. Enteric glia: the most alimentary of all glia. J Physiol. 2017;595(2):557–570. doi:10.1113/JP271021
  • Grundmann D, Loris E, Maas-Omlor S, et al. Enteric glia: S100, GFAP, and beyond. Anat Rec. 2019;302(8):1333–1344. doi:10.1002/ar.24128
  • Xu S, Qin B, Shi A, Zhao J, Guo X, Dong L. Oxytocin inhibited stress induced visceral hypersensitivity, enteric glial cells activation, and release of proinflammatory cytokines in maternal separated rats. Eur J Pharmacol. 2018;818:578–584. doi:10.1016/j.ejphar.2017.11.018
  • Fujikawa Y, Tominaga K, Tanaka F, et al. Enteric glial cells are associated with stress-induced colonic hyper-contraction in maternally separated rats. Neurogastroenterol Motil. 2015;27(7):1010–1023. doi:10.1111/nmo.12577
  • Yang YC, Zhou ZX, Xue T, et al. Effect of electroacupuncture on visceral sensitivity and colonic NGF, TrkA, TRPV1 expression in IBS-D rats. Zhongguo Zhen Jiu. 2022;42(12):1395–1402. doi:10.13703/j.0255-2930.20220130-0005
  • Chen Y, Cheng J, Zhang Y, Chen JDZ, Seralu FM. Electroacupuncture at ST36 relieves visceral hypersensitivity via the NGF/TrkA/TRPV1 peripheral afferent pathway in a rodent model of post-inflammation rectal hypersensitivity. J Inflamm Res. 2021;14:325–339. doi:10.2147/JIR.S285146
  • Hirose M, Kuroda Y, Murata E. NGF/TrkA signaling as a therapeutic target for pain. Pain Pract. 2016;16(2):175–182. doi:10.1111/papr.12342
  • Thacker MA, Clark AK, Marchand F, et al. Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg. 2007;105(3):838–847. doi:10.1213/01.ane.0000275190.42912.37
  • Zhang L, Wang R, Bai T, et al. EphrinB2/ephB2-mediated myenteric synaptic plasticity: mechanisms underlying the persistent muscle hypercontractility and pain in postinfectious IBS. FASEB J. 2019;33(12):13644–13659. doi:10.1096/fj.201901192R
  • Kokotos AC, Harper CB, Marland JRK, Smillie KJ, Cousin MA, Gordon SL. Synaptophysin sustains presynaptic performance by preserving vesicular synaptobrevin-II levels. J Neurochem. 2019;151(1):28–37. doi:10.1111/jnc.14797
  • Levy AM, Gomez-Puertas P, Tümer Z. Neurodevelopmental disorders associated with PSD-95 and its interaction partners. Int J Mol Sci. 2022;23(8):4390. doi:10.3390/ijms23084390
  • Chen X, Levy JM, Hou A, et al. PSD-95 family MAGUKs are essential for AMPA and NMDA receptor complexes at the postsynaptic density. Proc Natl Acad Sci U S A. 2015;112(50):E6983–E6992. doi:10.1073/pnas.1517045112
  • Baj A, Moro E, Bistoletti M, Orlandi V, Crema F, Giaroni C. Glutamatergic signaling along the microbiota-gut-brain axis. Int J Mol Sci. 2019;20(6):1482. doi:10.3390/ijms20061482
  • Bai Y, Chen YB, Qiu XT, et al. Nucleus tractus solitarius mediates hyperalgesia induced by chronic pancreatitis in rats. World J Gastroenterol. 2019;25(40):6077–6093. doi:10.3748/wjg.v25.i40.6077
  • Xu G, Li T, Huang Y. The effects of intraoperative hypothermia on postoperative cognitive function in the rat hippocampus and its possible mechanisms. Brain Sci. 2022;12(1):96. doi:10.3390/brainsci12010096
  • Zhou Q, Caudle RM, Price DD, Valle-Pinero AY D, Verne GN. Selective up-regulation of NMDA-NR1 receptor expression in myenteric plexus after TNBS induced colitis in rats. Mol Pain. 2006;2:3. doi:10.1186/1744-8069-2-3
  • Li P, Zheng J, Bai Y, et al. Characterization of kynurenine pathway in patients with diarrhea-predominant irritable bowel syndrome. Eur J Histochem. 2020;64(s2):3132. doi:10.4081/ejh.2020.3132