292
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Metformin Hydrochloride Loaded Mucoadhesive Microspheres and Nanoparticles for Anti-Hyperglycemic and Anticancer Effects Using Factorial Experimental Design

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 3661-3684 | Received 07 Sep 2023, Accepted 10 Nov 2023, Published online: 05 Dec 2023

References

  • Kumar CS, Karthikeyan D, Gadela VR. Enhanced effect of Metformin loaded chitosan nanoparticles in L6 Myotubes: in-vitro. Sch Res J. 2017;9(7):48–63.
  • Horenstein RB, Shuldiner AR. Genetics of Diabetes. Rev Endocr Metab Disord. 2004;5(1):25–36. doi:10.1023/B:REMD.0000016122.84105.75
  • Wild S, Roglic G, Green A, et al. Global Prevalence of Diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–1053. doi:10.2337/diacare.27.5.1047
  • Mohan V, Sandeep S, Deepa R, et al. Epidemiology of type 2 diabetes: Indian scenario. Indian J Med Res. 2007;125:3.
  • Akiyama S, Katsumata S, Suzuki K, et al. Hypoglycemic and Hypolipidemic Effects of Hesperidin and Cyclodextrin-Clathrated Hesperetin in Goto-Kakizaki Rats with Type 2 Diabetes. Biosci Biotechnol Biochem. 2009;73(12):2779–2782. doi:10.1271/bbb.90576
  • Ibrahim HO, Osilesi O, Adebawo OO, et al. In vitro Assessment of the Potential Antioxidant and Antidiabetic Properties of Edible Parts of Chrysophyllum albidum Fruit Extracts. J Food Nutr Res. 2019;7:105–113.
  • Kearney J, Gnudi L. The Pillars for Renal Disease Treatment in Patients with Type 2 Diabetes. Pharmaceutics. 2023;15(5):1343. doi:10.3390/pharmaceutics15051343
  • Viollet B, Guigas B, Garcia NS, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci. 2011;122(6):253–270. doi:10.1042/CS20110386
  • Grzybowska M, Bober J, Olszewska M. Metformin - mechanisms of action and use for the treatment of type 2 diabetes mellitus. Postepy Hig Med Dosw. 2011;65:277–285. doi:10.5604/17322693.941655
  • Balogh DB, Wagner LJ, Fekete A. An Overview of the Cardioprotective Effects of Novel Antidiabetic Classes: focus on Inflammation, Oxidative Stress, and Fibrosis. Int J Mol Sci. 2023;24(9):7789. doi:10.3390/ijms24097789
  • Viollet B, Guigas B, Garcia NS, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci. 2012;122(6):253–270.
  • Dowling RJ, Goodwin PJ, Stambolic V. Understanding the benefit of metformin use in cancer treatment. BMC Med. 2011;9(1):33. doi:10.1186/1741-7015-9-33
  • Adikwu MU, Yoshikawa Y, Takada K. Bioadhesive Delivery of Metformin Using Prosopis Gum with Antidiabetic Potential. Biol Pharm Bull. 2003;26(5):662–666. doi:10.1248/bpb.26.662
  • Boldhane SP, Kuchekar BS. Gastroretentive Drug Delivery of Metformin Hydrochloride: formulation and In Vitro Evaluation Using 32 Full Factorial Design. Curr Drug Deliv. 2009;6(5):477–485. doi:10.2174/156720109789941641
  • Murphy C, Pillay V, Choonara YE, et al. Optimization of a Dual Mechanism Gastrofloatable and Gastroadhesive Delivery System for Narrow Absorption Window Drugs. AAPS Pharm Sci Tech. 2012;13(1):1–15. doi:10.1208/s12249-011-9711-1
  • Raparla R, Talasila EKM. Design and evaluation of floating drug delivery systems of metformin with natural gums as release retarding polymers. Int J Adv Pharm. 2012;1:22.
  • Amorim MJLG, Ferreira JPM. Microparticles for delivering therapeutic peptides and proteins to the lumen of the small intestine. Eur J Pharm Biopharm. 2001;52(1):39–44. doi:10.1016/S0939-6411(01)00148-5
  • Gelperina S, Kisich K, Iseman MD, et al. The Potential Advantages of Nanoparticle Drug Delivery Systems in Chemotherapy of Tuberculosis. Am J Respir Crit Care Med. 2005;172(12):1487–1490. doi:10.1164/rccm.200504-613PP
  • Gundogdu N, Cetin M. Chitosan-poly (lactide-co-glycolide) (CS-PLGA) nanoparticles containing metformin HCl: preparation and in vitro evaluation. Pak J Pharm Sci. 2014;27(6):1923–1929.
  • Alexis F, Pridgen EM, Langer R, et al. Nanoparticle Technologies for Cancer Therapy. Drug Deliv. 2010;197:86.
  • Cetin M, Sahin S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Deliv. 2016;23(8):2796–2805. doi:10.3109/10717544.2015.1089957
  • Wen H, Jung H, Li X. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: opportunities and Challenges. AAPS J. 2015;17(6):1327–1340. doi:10.1208/s12248-015-9814-9
  • Janczura M, Sip S, Cielecka-Piontek J. The Development of Innovative Dosage Forms of the Fixed-Dose Combination of Active Pharmaceutical Ingredients. Pharmaceutics. 2022;14(4):834. doi:10.3390/pharmaceutics14040834
  • Yu H, Zhong X, Gao P, et al. The Potential Effect of Metformin on Cancer: an Umbrella Review. Front Endocrinol. 2019;10:617. doi:10.3389/fendo.2019.00617
  • Kourelis TV, Siegel RD. Metformin and cancer: new applications for an old drug. Med Oncol. 2012;29(2):1314–1327. doi:10.1007/s12032-011-9846-7
  • Ganjali M, Ganjali H. Anticancer Effect of Metformin, an antidiabetic drug, on breast Cancer Cells. J Nov Appl Sci. 2013;2:796–801.
  • Xu X, Ho W, Zhang X, et al. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. 2015;21(4):223–232. doi:10.1016/j.molmed.2015.01.001
  • Aljofan M, Riethmacher D. Anticancer activity of metformin: a systematic review of the literature. Future Sci OA. 2019;5(8):410. doi:10.2144/fsoa-2019-0053
  • Hasan I, Paul S, Akhter S, et al. Evaluation and Optimization of Influence of Permeability Property and Concentration of Polymethacrylic Polymers on Microspheres of Metformin HCl. Dhaka Univ J Pharm Sci. 2013;12:2.
  • Cetin M, Atila A, Sahin S, et al. Preparation and characterization of metformin hydrochloride loaded-Eudragit® RSPO and Eudragit® RSPO/PLGA nanoparticles. Pharm Dev Technol. 2013;18(3):570–576. doi:10.3109/10837450.2011.604783
  • Deryabin DG, Efremova LV, Vasilchenko AS, et al. A zeta potential value determines the aggregate’s size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells. J Nanobiotechnol. 2015;13(1):50. doi:10.1186/s12951-015-0112-6
  • Corti G, Cirri M, Maestrelli F, et al. Sustained-release matrix tablets of metformin hydrochloride in combination with triacetyl-β-cyclodextrin. Eur J Pharm Biopharm. 2008;68:303–309.
  • Valot P, Baba M, Nedelec JM, et al. Effects of process parameters on the properties of biocompatible Ibuprofen-loaded microcapsules. Int J Pharm. 2009;369(1–2):53–63. doi:10.1016/j.ijpharm.2008.10.037
  • Baboota S, Shakeel F, Ahuja A, et al. Design development and evaluation of novel nanoemulsion formulations for transdermal potential of Celecoxib. Acta Pharm Zagreb Croat. 2007;57:315–332.
  • Block LC, Schmeling LO, Couto AG, et al. Effect of binders on 500mg metformin hydrochloride tablets produced by wet granulation. Rev Ciênc Farm Básica E Apl. 2009;30:2.
  • Wadher KJ, Kakde RB, Umekar MJ. Study on sustained-release metformin hydrochloride from matrix tablet: influence of hydrophilic polymers and in vitro evaluation. Int J Pharm Investig. 2011;1(3):157–163. doi:10.4103/2230-973X.85966
  • Veiga A, Oliveira PR, Bernardi LS, et al. Solid-state compatibility studies of a drug without melting point. J Therm Anal Calorim. 2018;131(3):3201–3209. doi:10.1007/s10973-017-6756-8
  • Sheela NR, Muthu S, Krishnan SS. FTIR, FT Raman and UV-visible spectroscopic analysis on metformin hydrochloride. Asian J Chem. 2010;22:5049.
  • Piao J, Lee JE, Weon KY, et al. Development of novel mucoadhesive pellets of metformin hydrochloride. Arch Pharm Res. 2009;32(3):391–397. doi:10.1007/s12272-009-1312-0
  • Sundaramoorthy R, Raju MDD. Self-emulsifying drug delivery system: a review. WJPPS. 2012;2:89–107.
  • Freitas MN, Marchetti JM. Nimesulide PLA microspheres as a potential sustained release system for the treatment of inflammatory diseases. Int J Pharm. 2005;295(1–2):201–211. doi:10.1016/j.ijpharm.2005.03.003
  • Libo Y, Reza F. Kinetic modeling on drug release from controlled drug delivery system. J Pharm Sci. 1996;85(2):170. doi:10.1021/js950250r
  • Gibaldi M, Feldman S. Establishment of sink conditions in dissolution rate determinations. Theoretical considerations and application to nondisintegrating dosage forms. J Pharm Sci. 1967;56(10):1238–1242. doi:10.1002/jps.2600561005
  • Dewan I, Islam S, Rana MS. Characterization and Compatibility Studies of Different Rate Retardant Polymer Loaded Microspheres by Solvent Evaporation Technique: in Vitro-In Vivo Study of Vildagliptin as a Model Drug. J Drug Deliv. 2015;2015:496807. doi:10.1155/2015/496807
  • Kalam MA, Humayun M, Parvez N, et al. Release Kinetics of Modified Pharmaceutical Dosage Forms: a Review. Cont J Pharm Sci. 2007;1:30–35.
  • Desai SJ, Singh P, Simonelli AP, et al. Investigation of factors influencing release of solid drug dispersed in inert matrices II: quantitation of procedures. J Pharm Sci. 1966;55(11):1224–1229. doi:10.1002/jps.2600551112
  • Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem. Phys. Lipids. 2016;201:28–40. doi:10.1016/j.chemphyslip.2016.10.005
  • Rivas CJM, Tarhini M, Badri W, et al. Nanoprecipitation process: from encapsulation to drug delivery. International Journal of Pharmaceutics. 2017;532(1):66–81. doi:10.1016/j.ijpharm.2017.08.064
  • Korsmeyer RW, Gurny R, Doelker E, et al. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35. doi:10.1016/0378-5173(83)90064-9
  • Mady OY, Al-Shoubki AA, Donia AA. An Industrial Procedure for Pharmacodynamic Improvement of Metformin HCl via Granulation with Its Paracellular Pathway Enhancer Using Factorial Experimental Design. Drug Des Devel Ther. 2021;15:4469–4487. doi:10.2147/DDDT.S328262
  • Deli MA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta BBA - Biomembr. 2009;1788:892–910.
  • Dimitrijevic D, Shaw AJ, Florence AT. Effects of Some Non-ionic Surfactants on Transepithelial Permeability in Caco-2 Cells. J Pharm Pharmacol. 2000;52:157–162. doi:10.1211/0022357001773805
  • Subramanian N, Sharavanan SP, Chandrasekar P, et al. Lacidipine self-nanoemulsifying drug delivery system for the enhancement of oral bioavailability. Arch Pharm Res. 2016;39(4):481–491. doi:10.1007/s12272-015-0657-9
  • Ghasemiyeh P, Mohammadi-Samani S. Potential of Nanoparticles as Permeation Enhancers and Targeted Delivery Options for Skin: advantages and Disadvantages. Drug Des Devel Ther. 2020;14:3271–3289. doi:10.2147/DDDT.S264648
  • Park SH, Oh SG, Mun JY, et al. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf B Biointerfaces. 2006;48(2):112–118. doi:10.1016/j.colsurfb.2006.01.006
  • Hughes SG. Prescribing for the elderly patient: why do we need to exercise caution? Br J Clin Pharmacol. 1998;46(6):531–533. doi:10.1046/j.1365-2125.1998.00842.x
  • Graham GG, Punt J, Arora M, et al. Pharmacokinet of Metformin. Clin Pharmacokinet. 2011;50(2):81–98. doi:10.2165/11534750-000000000-00000
  • Apu AS, Pathan AH, Shrestha D, et al. Investigation of in vitro release kinetics of carbamazepine from Eudragit® RS PO and RL PO matrix tablets. Trop J Pharm Res. 2009;8(2):145–152. doi:10.4314/tjpr.v8i2.44523
  • Dahan A, Porat D, Markovic M, et al. Optimized In Silico Modeling of Drug Absorption after Gastric Bypass: the Case of Metformin. Pharmaceutics. 2021;13(11):1873. doi:10.3390/pharmaceutics13111873
  • Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4:35–51. doi:10.1517/14712598.4.1.35
  • Yu LX, Amidon GL, Polli JE, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharma Res. 2002;19:921–925. doi:10.1023/A:1016473601633
  • Kawabata Y, Wada K, Nakatani M, et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10. doi:10.1016/j.ijpharm.2011.08.032
  • Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42. doi:10.1016/0168-3659(87)90035-6
  • Kendre PN, Chaudhari PD. Effect of polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer on bioadhesion and release rate property of eplerenone pellets. Drug Dev Ind Pharm. 2017;43:751–761. doi:10.1080/03639045.2016.1220570
  • Hasan AA, Madkor H, Wageh S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv. 2013;20(3–4):120–126. doi:10.3109/10717544.2013.779332
  • Saha AK, Ray SD. Effect of cross-linked biodegradable polymers on sustained release of sodium diclofenac-loaded microspheres. Braz J Pharm Sci. 2013;49(4):873–888. doi:10.1590/S1984-82502013000400028
  • Sarkar K, Sadat SMA, Islam MS, et al. Study of Ethyl Cellulose Based Sustained Release Microspheres of Naproxen Sodium. Dhaka Univ J Pharm Sci. 2011;10:2.
  • Gunjal A, Walunj M, Aghera H, et al. Hypoglycemic and anti-hyperglycemic activity of Triphalādi granules in mice. Anc Sci Life. 2016;35(4):207–211. doi:10.4103/0257-7941.188177
  • Ashwell M, Stone EM, Stolte H, et al. UK Food Standards Agency Workshop Report: an investigation of the relative contributions of diet and sunlight to vitamin D status. Br J Nutr. 2010;104(4):603–611. doi:10.1017/S0007114510002138
  • Almoazen H. Chapter 4: dosage forms and drug delivery systems. APhA Complete Rev Pharm. 2017.
  • Page DA, Carlson GP. Method for Studying the Permeability of the Rat Intestinal Tract to Carbon Tetrachloride. Toxicol Methods. 1991;1(3):188–198. doi:10.3109/15376519109044569
  • Arcidiacono B, Iiritano S, Nocera A, et al. Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabetes Res. 2012;2012:789174. doi:10.1155/2012/789174
  • Pereira ASBF, Lima MLS, Silva-Junior AA, et al. In vitro-in vivo availability of metformin hydrochloride-PLGA nanoparticles in diabetic rats in a periodontal disease experimental model. Pharm Biol. 2021;59(1):1574–1582. doi:10.1080/13880209.2021.2002369
  • Kumar K, Pant NC, Ahmad S, et al. Development and evaluation of floating microspheres of curcumin in alloxan-induced diabetic rats. Trop J Pharm Res. 2016;15(9):9. doi:10.4314/tjpr.v15i9.1