109
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Phytochemical Analysis and Anti-Biofilm Potential That Cause Dental Caries from Black Cumin Seeds (Nigella sativa Linn.)

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1917-1932 | Received 10 Dec 2023, Accepted 23 Apr 2024, Published online: 29 May 2024

References

  • Kay JG, Kramer JM, Visser MB. Danger signals in oral cavity-related diseases. J Leukoc Biol. 2019;106(1):193–200. doi:10.1002/JLB.4MIR1118-439R
  • Voidarou C, Antoniadou M, Rozos G, et al. An in vitro study of different types of Greek honey as potential natural antimicrobials against dental caries and other oral pathogenic microorganisms. Case study simulation of oral cavity conditions. Appl Sci. 2021;11(14). doi:10.3390/app11146318
  • Niu Y, Wang K, Zheng S, et al. Antibacterial effect of caffeic acid phenethyl ester on cariogenic bacteria and streptococcus mutans biofilms. Antimicrob Agents Chemother. 2020;64(9). doi:10.1128/AAC.00251-20
  • Javed S, Zakirulla M, Baig RU, Asif SM, Meer AB. Development of artificial neural network model for prediction of post-streptococcus mutans in dental caries. Comput Methods Programs Biomed. 2020;186. doi:10.1016/j.cmpb.2019.105198
  • Cheng L, Zhang L, Yue L, et al. Expert consensus on dental caries management. Int J Oral Sci. 2022;14(1). doi:10.1038/s41368-022-00167-3
  • Pachaiappan R, Nagasathiya K, Singh PK, et al. Phytochemical profile of black cumin (Nigella sativa L.) seed oil: identification of bioactive anti-pathogenic compounds for traditional Siddha formulation. Biomass Convers Biorefin. 2022. doi:10.1007/s13399-022-02951-x
  • Hannan MA, Rahman MA, Sohag AAM, et al. Black cumin (Nigella sativa l.): a comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients. 2021;13(6):1784. doi:10.3390/nu13061784
  • Biswas A, Ahmed T, Rana MR, et al. Fabrication and Characterization of ZnO nanoparticles-based biocomposite films prepared using carboxymethyl cellulose, taro mucilage, and black cumin seed oil for evaluation of antioxidant and antimicrobial activities. Agronomy. 2023;13(1):147. doi:10.3390/agronomy13010147
  • Adegbeye MJ, Elghandour MMMY, Faniyi TO, et al. Antimicrobial and antihelminthic impacts of black cumin, pawpaw and mustard seeds in livestock production and health. Agrofor Syst. 2020;94(4):1255–1268. doi:10.1007/s10457-018-0337-0
  • Kolayli S, Kazaz G, Özkök A, et al. The phenolic composition, aroma compounds, physicochemical and antimicrobial properties of Nigella sativa L. (black cumin) honey. Eur Food Res Technol. 2023;249(3):653–664. doi:10.1007/s00217-022-04160-2
  • Al-Khalifa KS, Alsheikh R, Al-Hariri MT, et al. Evaluation of the antimicrobial effect of thymoquinone against different dental pathogens: an in vitro study. Molecules. 2021;26(21):6451. doi:10.3390/molecules26216451
  • Aqawi M, Sionov RV, Gallily R, Friedman M, Steinberg D. Anti-Bacterial Properties of Cannabigerol Toward Streptococcus mutans. Front Microbiol. 2021;12. doi:10.3389/fmicb.2021.656471
  • Bedoya-Correa CM, Rincón Rodríguez RJ, Parada-Sanchez MT. Genomic and phenotypic diversity of Streptococcus mutans. J Oral Biosci. 2019;61(1):22–31. doi:10.1016/j.job.2018.11.001
  • Zhang Q, Ma Q, Wang Y, Wu H, Zou J. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int J Oral Sci. 2021;13(1). doi:10.1038/s41368-021-00137-1
  • Lemos JA, Palmer SR, Zeng L, et al. The Biology of Streptococcus mutans. Microbiol Spectr. 2019;7(1). doi:10.1128/microbiolspec.gpp3-0051-2018
  • Barma MD, Muthupandiyan I, Samuel SR, Amaechi BT. Inhibition of Streptococcus mutans, antioxidant property and cytotoxicity of novel nano-zinc oxide varnish. Arch Oral Biol. 2021;126. doi:10.1016/j.archoralbio.2021.105132
  • Bin C, Al-Dhabi NA, Esmail GA, Arokiyaraj S, Arasu MV. Potential effect of Allium sativum bulb for the treatment of biofilm forming clinical pathogens recovered from periodontal and dental caries. Saudi J Biol Sci. 2020;27(6):1428–1434. doi:10.1016/j.sjbs.2020.03.025
  • Lin Y, Chen J, Zhou X, Li Y. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit Rev Microbiol. 2021;47(5):667–677. doi:10.1080/1040841X.2021.1915959
  • Barran-Berdon AL, Ocampo S, Haider M, et al. Enhanced purification coupled with biophysical analyses shows cross-β structure as a core building block for Streptococcus mutans functional amyloids. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-62115-7
  • Chen D, Cao Y, Yu L, et al. Characteristics and influencing factors of amyloid fibers in S. mutans biofilm. AMB Express. 2019;9(1). doi:10.1186/s13568-019-0753-1
  • Iversen KH, Rasmussen LH, Al-Nakeeb K, et al. Similar genomic patterns of clinical infective endocarditis and oral isolates of Streptococcus sanguinis and Streptococcus gordonii. Sci Rep. 2020;10(1). doi:10.1038/s41598-020-59549-4
  • Treerat P, Redanz U, Redanz S, Giacaman RA, Merritt J, Kreth J. Synergism between Corynebacterium and Streptococcus sanguinis reveals new interactions between oral commensals. Isme J. 2020;14(5):1154–1169. doi:10.1038/s41396-020-0598-2
  • Redanz U, Redanz S, Treerat P, et al. Differential response of oral mucosal and gingival cells to Corynebacterium durum, Streptococcus sanguinis, and Porphyromonas gingivalis multispecies biofilms. Front Cell Infect Microbiol. 2021:11. doi:10.3389/fcimb.2021.686479
  • Díaz-Garrido N, Lozano CP, Kreth J, Giacaman RA. Extended biofilm formation time by Streptococcus sanguinis modifies its non-cariogenic behavior, in vitro. Braz Oral Res. 2022;36:e107. doi:10.1590/1807-3107bor-2022.vol36.0107
  • Lyu X, Wang L, Shui Y, et al. Ursolic acid inhibits multi-species biofilms developed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii. Arch Oral Biol. 2021:125. doi:10.1016/j.archoralbio.2021.105107
  • Cui G, Li P, Wu R, Lin H. Streptococcus mutans membrane vesicles inhibit the biofilm formation of Streptococcus gordonii and Streptococcus sanguinis. AMB Express. 2022;12(1). doi:10.1186/s13568-022-01499-3
  • Martini AM, Moricz BS, Ripperger AK, et al. Association of novel streptococcus sanguinis virulence factors with pathogenesis in a native valve infective endocarditis model. Front Microbiol. 2020:11. doi:10.3389/fmicb.2020.00010
  • Martini AM, Moricz BS, Woods LJ, Jones BD. Type IV Pili of Streptococcus sanguinis Contribute to Pathogenesis in Experimental Infective Endocarditis. Microbiol Spectr. 2021;9(3). doi:10.1128/spectrum.01752-21
  • Li X, Bosch-Tijhof CJ, Wei X, et al. Efficiency of chemical versus mechanical disruption methods of DNA extraction for the identification of oral Gram-positive and Gram-negative bacteria. J Int Med Res. 2020;48(5). doi:10.1177/0300060520925594
  • Belibasakis GN, Maula T, Bao K, et al. Virulence and pathogenicity properties of Aggregatibacter actinomycetemcomitans. Pathogens. 2019;8(4). doi:10.3390/pathogens8040222
  • Danforth DR, Melloni M, Tristano J, Mintz KP. Contribution of adhesion proteins to Aggregatibacter actinomycetemcomitans biofilm formation. Mol Oral Microbiol. 2021;36(4):243–253. doi:10.1111/omi.12346
  • Lindholm M, Min Aung K, Nyunt Wai S, Oscarsson J. Role of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance. J Oral Microbiol. 2019;11(1). doi:10.1080/20002297.2018.1536192
  • Hutchings M, Truman A, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80. doi:10.1016/j.mib.2019.10.008
  • Butler MS, Paterson DL. Antibiotics in the clinical pipeline in October 2019. J Antibiotics. 2020;73(6):329–364. doi:10.1038/s41429-020-0291-8
  • Danner MC, Robertson A, Behrends V, Reiss J. Antibiotic pollution in surface fresh waters: occurrence and effects. Science of the Total Environment. 2019;664:793–804. doi:10.1016/j.scitotenv.2019.01.406
  • Ganapathy US, Dartois V, Dick T. Repositioning rifamycins for Mycobacterium abscessus lung disease. Expert Opin Drug Discov. 2019;14(9):867–878. doi:10.1080/17460441.2019.1629414
  • Adams RA, Leon G, Miller NM, et al. Rifamycin antibiotics and the mechanisms of their failure. J Antibiotics. 2021;74(11):786–798. doi:10.1038/s41429-021-00462-x
  • Sanchez CJ, Shiels SM, Tennent DJ, Hardy SK, Murray CK, Wenke JC. Rifamycin derivatives are effective against staphylococcal biofilms in vitro and elutable from PMMA. Clin Orthop Relat Res. 2015;473(9):2874–2884. doi:10.1007/s11999-015-4300-3
  • Huttner A, Bielicki J, Clements MN, et al. Oral amoxicillin and amoxicillin–clavulanic acid: properties, indications and usage. Clin Microbiol Infect. 2020;26(7):871–879. doi:10.1016/j.cmi.2019.11.028
  • Araújo Júnior AG, Costa ML, Silva FRP, et al. Amoxicillin-resistant streptococci carriage in the mouths of children: a systematic review and meta-analysis. Pathogens. 2022;11(10):1114. doi:10.3390/pathogens11101114
  • Rebitski EP, Souza GP, Santana SAA, Pergher SBC, Alcântara ACS. Bionanocomposites based on cationic and anionic layered clays as controlled release devices of amoxicillin. Appl Clay Sci. 2019;173:35–45. doi:10.1016/j.clay.2019.02.024
  • Brookes ZLS, Belfield LA, Ashworth A, et al. Effects of chlorhexidine mouthwash on the oral microbiome. J Dent. 2021:113. doi:10.1016/j.jdent.2021.103768
  • Huang S, Wu M, Li Y, et al. The dlt operon contributes to the resistance to chlorhexidine in Streptococcus mutans. Int J Antimicrob Agents. 2022;59(3):106540. doi:10.1016/j.ijantimicag.2022.106540
  • Taghdisi-Kashani A, Gholamshahi A, Fathizadeh H, et al. Antimicrobial activity of children’s toothpaste on the bacteria causing dental caries. Iranian J Med Microbiol. 2022;16(5):399–404. doi:10.30699/ijmm.16.5.399
  • Hassan M, Shafique F, Bhutta H, et al. A comparative study to evaluate the effects of antibiotics, plant extracts and fluoride-based toothpaste on the oral pathogens isolated from patients with gum diseases in Pakistan. Braz J Biol. 2023:83. doi:10.1590/1519-6984.242703
  • Tang B, Gong T, Zhou X, et al. Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Arch Oral Biol. 2019;99:190–197. doi:10.1016/j.archoralbio.2019.01.016
  • Miyachiro MM, Granato D, Trindade DM, Ebel C, Paes Leme AF, Dessen A. Complex formation between mur enzymes from streptococcus pneumoniae. Biochemistry. 2019;58(30):3314–3324. doi:10.1021/acs.biochem.9b00277
  • El Zoeiby A, Sanschagrin F, Levesque RC. Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol. 2003;47(1):1–12. doi:10.1046/j.1365-2958.2003.03289.x
  • Li H, Zhou Y, Wang N, Xin Y, Tang L, Ma Y. Identification and Characterization of a MurA, UDP-N-acetylglucosamine enolpyruvyl transferase from cariogenic streptococcus mutans; 2012.
  • Chabán MF, Hrast M, Frlan R, Graikioti DG, Athanassopoulos CM, Carpinella MC. Inhibition of mura enzyme from Escherichia coli and Staphylococcus aureus by diterpenes from lepechinia meyenii and their synthetic analogs. Antibiotics. 2021;10(12). doi:10.3390/antibiotics10121535
  • Hrast M, Frlan R, Knez D, Zdovc I, Barreteau H, Gobec S. Mur ligases inhibitors with azastilbene scaffold: expanding the structure–activity relationship. Bioorg Med Chem Lett. 2021;40. doi:10.1016/j.bmcl.2021.127966
  • Dias MC, Pinto DC, Silva AMS. Plant flavonoids: chemical characteristics and biological activity. Molecules. 2021;26(17). doi:10.3390/molecules26175377
  • Donadio G, Mensitieri F, Santoro V, et al. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics. 2021;13(5):660. doi:10.3390/pharmaceutics13050660
  • Gutiérrez-Venegas G, Gómez-Mora JA, Meraz-Rodríguez MA, Flores-Sánchez MA, Ortiz-Miranda LF. Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque. Heliyon. 2019;5(12):e03013. doi:10.1016/j.heliyon.2019.e03013
  • Socorro Chagas MS D, Behrens MD, Moragas-Tellis CJ, Penedo GXM, Silva AR, Gonçalves-de-albuquerque CF. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid Med Cell Longev. 2022;2022. doi:10.1155/2022/9966750
  • Liang J, Huang X, Ma G. Antimicrobial activities and mechanisms of extract and components of herbs in East Asia. RSC Adv. 2022;12(45):29197–29213. doi:10.1039/d2ra02389j
  • Machorowska-Pieniążek A, Morawiec T, Olek M, et al. Advantages of using toothpaste containing propolis and plant oils for gingivitis prevention and oral cavity hygiene in cleft lip/palate patients. Biomed Pharmacother. 2021:142. doi:10.1016/j.biopha.2021.111992
  • Milutinovici RA, Chioran D, Buzatu R, et al. Vegetal compounds as sources of prophylactic and therapeutic agents in dentistry. Plants. 2021;10(10):2148. doi:10.3390/plants10102148
  • Ito Y, Ito T, Yamashiro K, et al. Antimicrobial and antibiofilm effects of abietic acid on cariogenic Streptococcus mutans. Odontology. 2020;108(1):57–65. doi:10.1007/s10266-019-00456-0
  • Moraes da TS, Leandro LF, Santiago MB, et al. Assessment of the antibacterial, antivirulence, and action mechanism of Copaifera pubiflora oleoresin and isolated compounds against oral bacteria. Biomed Pharmacother. 2020:129. doi:10.1016/j.biopha.2020.110467
  • Bhagavathy S, Mahendiran C, Kanchana R. Identification of glucosyl transferase inhibitors from Psidium guajava against Streptococcus mutans in dental caries. J Tradit Complement Med. 2019;9(2):124–137. doi:10.1016/j.jtcme.2017.09.003
  • Egra S, Kuspradini H, Kusuma IW, Batubara I, Yamauchi K, Mitsunaga T. Garcidepsidone B from Garcinia parvifolia: antimicrobial activities of the medicinal plants from East and North Kalimantan against dental caries and periodontal disease pathogen. Med Chem Res. 2023;32(8):1658–1665. doi:10.1007/s00044-023-03071-5
  • Putri Adhiningtyas A, Khoswanto C, Luthfi M. Inhibitory potency of butterfly pea (Clitoria ternatea Linn.) extract against the growth of Streptococcus mutans. World J Advan Res Rev. 2023;17(1):150–156. doi:10.30574/wjarr.2023.17.1.1474
  • Barrera C, Betoret N, Seguí L. Phenolic profile of cane sugar derivatives exhibiting antioxidant and antibacterial properties. Sugar Tech. 2020;22(5):798–811. doi:10.1007/s12355-020-00817-y
  • Pavlović T, Dimkić I, Andrić S, et al. Linden tea from Serbia – an insight into the phenolic profile, radical scavenging and antimicrobial activities. Ind Crops Prod. 2020:154. doi:10.1016/j.indcrop.2020.112639
  • Ochoa C, Solinski AE, Nowlan M, Dekarske MM, Wuest WM, Kozlowski MC. A bisphenolic honokiol analog outcompetes oral antimicrobial agent cetylpyridinium chloride via a membrane-associated mechanism. ACS Infect Dis. 2020;6(1):74–79. doi:10.1021/acsinfecdis.9b00190
  • Domínguez-Avila JA, Villa-Rodriguez JA, Montiel-Herrera M, et al. Phenolic compounds promote diversity of gut microbiota and maintain colonic health. Dig Dis Sci. 2021;66(10):3270–3289. doi:10.1007/s10620-020-06676-7
  • Efenberger-Szmechtyk M, Nowak A, Czyzowska A. Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products. Crit Rev Food Sci Nutr. 2021;61(1):149–178. doi:10.1080/10408398.2020.1722060
  • Jolly A, Kim H, Moon JY, Mohan A, Lee YC. Exploring the imminent trends of saponins in personal care product development: a review. Ind Crops Prod. 2023;205:117489. doi:10.1016/j.indcrop.2023.117489
  • Ayyanaar S, Kesavan MP. One-pot biogenic synthesis of gold nanoparticles@saponins niosomes: sustainable nanomedicine for antibacterial, anti-inflammatory and anticancer therapeutics. Colloids Surf a Physicochem Eng Asp. 2023;676:132229. doi:10.1016/j.colsurfa.2023.132229
  • Sun X, Yang X, Xue P, Zhang Z, Ren G. Improved antibacterial effects of alkali-transformed saponin from quinoa husks against halitosis-related bacteria. BMC Complement Altern Med. 2019;19(1). doi:10.1186/s12906-019-2455-2
  • Schestakow A, Hannig M. Effects of experimental agents containing Tannic acid or Chitosan on the bacterial biofilm formation in situ. Biomolecules. 2020;10(9):1–17. doi:10.3390/biom10091315
  • Farha AK, Yang QQ, Kim G, et al. Tannins as an alternative to antibiotics. Food Biosci. 2020:38. doi:10.1016/j.fbio.2020.100751
  • Schestakow A, Guth MS, Eisenmenger TA, Hannig M. Evaluation of anti-biofilm activity of mouthrinses containing tannic acid or chitosan on dentin in situ. Molecules. 2021;26(5):1351. doi:10.3390/molecules26051351
  • Yagoub SO. Chapter four - Black cumin: morphology, physiology, growth, and agricultural yield. In: Mariod AA editor. Biochemistry, Nutrition, and Therapeutics of Black Cumin Seed. Academic Press; 2023:19–25. doi:10.1016/B978-0-323-90788-0.00016-0
  • Burdock GA. Assessment of black cumin (Nigella sativa L.) as a food ingredient and putative therapeutic agent. Regul Toxicol Pharmacol. 2022;128:105088. doi:10.1016/j.yrtph.2021.105088
  • Islam MN, Hossain KS, Sarker PP, et al. Revisiting pharmacological potentials of Nigella sativa seed: a promising option for COVID-19 prevention and cure. Phytother Res. 2021;35(3):1329–1344. doi:10.1002/ptr.6895
  • Nyemb JN, Shaheen H, Wasef L, Nyamota R, Segueni N, El-Saber Batiha G. Black cumin: a review of its pharmacological effects and its main active constituent. Pharmacogn Rev. 2022;16(32):107–125. doi:10.5530/phrev.2022.16.16
  • Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F, Nigella Sativa L. (Black Cumin): a promising natural remedy for wide range of illnesses. Evid Based Complement Alternat Med. 2019;2019:1–16. doi:10.1155/2019/1528635
  • Padhye S, Banerjee S, Ahmad A, Mohammad R, Sarkar FH. From here to eternity-the secret of pharaohs: therapeutic potential of black cumin seeds and Beyond. Cancer Therapy. 2008;6(b):495.
  • Yuan G, Guan Y, Yi H, Lai S, Sun Y, Cao S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci Rep. 2021;11(1). doi:10.1038/s41598-021-90035-7
  • Kabir Y, Akasaka-Hashimoto Y, Kubota K, Komai M. Volatile compounds of black cumin (Nigella sativa L.) seeds cultivated in Bangladesh and India. Heliyon. 2020;6(10):e05343. doi:10.1016/j.heliyon.2020.e05343
  • Albakry Z, Karrar E, Mohamed Ahmed IA, et al. Nutritional composition and volatile compounds of black cumin (Nigella sativa L.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae. 2022;8(7). doi:10.3390/horticulturae8070575
  • Dey BK, Hossain MMM, Alam ME. Effect of black cumin seed oil on growth, innate immunity and resistance against Pseudomonas fluorescens infection in Nile tilapia Oreochromis niloticus. Aquacult Int. 2020;28(4):1485–1499. doi:10.1007/s10499-020-00539-8
  • Habib N, Choudhry S. HPLC quantification of thymoquinone extracted from nigella sativa L. (Ranunculaceae) seeds and antibacterial activity of its extracts against bacillus species. Evid Based Complement Alternat Med. 2021;2021. doi:10.1155/2021/6645680
  • Kiari FZ, Meddah B, Tir Touil Meddah A. In vitro study on the activity of essential oil and methanolic extract from Algerian Nigella sativa L. Seeds on the growth kinetics of micro-organisms isolated from the buccal cavities of periodontal patients. Saudi Dent J. 2018;30(4):312–323. doi:10.1016/j.sdentj.2018.05.011
  • Kazemi M. Phytochemical Composition, Antioxidant, Anti-inflammatory and Antimicrobial Activity of Nigella sativa L. Essential Oil. J Essent Oil Bear Plants. 2014;17(5):1002–1011. doi:10.1080/0972060X.2014.914857
  • Baaliouamer A, Benkaci-Ali F, Meklati BY, Chemat F. Chemical composition of seed essential oils from Algerian Nigella sativa extracted by microwave and hydrodistillation. J Basel. 2007;22:148–153. doi:10.1002/ffj
  • Mechraoui O, Ladjel S, Said Nedjimi M, Lakhdar Belfar M, Moussaoui Y. Determination of polyphenols content, antioxidant and antibacterial activity of nigella sativa L. Seed PhenExtrac. 2018;19:1.
  • Enomoto S, Asano R, Iwahori Y, et al. Hematological Studies on Black Cumin Oil from the Seeds of Nigella sativa L. Pharmac Soc Japan. 2001;24(3):307–310.
  • Akram Khan M. Chemical composition and medicinal properties of nigella sativa linn; 1999.
  • Bourgou S, Pichette A, Lavoie S, Marzouk B, Legault J. Terpenoids isolated from Tunisian Nigella sativa L. essential oil with antioxidant activity and the ability to inhibit nitric oxide production. Flavour Fragr J. 2012;27(1):69–74. doi:10.1002/ffj.2085
  • Liu X, El-Aty AM A, Shim JH. Various extraction and analytical techniques for isolation and identification of secondary metabolites from nigella sativa seeds. Mini Reviews in Med Chem. 2011;11:947–955. doi:10.2174/138955711797068472
  • Salem MA, El-Shiekh RA, Aborehab NM, et al. Metabolomics driven analysis of Nigella sativa seeds identifies the impact of roasting on the chemical composition and immunomodulatory activity. Food Chem. 2023;398:133906. doi:10.1016/j.foodchem.2022.133906
  • Akram Khan M, Afzal M. Chemical composition of Nigella sativa Linn: part 2 Recent advances. Inflammopharmacology. 2016;24(2–3):67–79. doi:10.1007/s10787-016-0262-7
  • Mehta BK, Sharma U, Agrawal S, Pandit V, Joshi N, Gupta M. Isolation and characterization of new compounds from seeds of Nigella sativa. Med Chem Res. 2008;17:462–473. doi:10.1007/s00044-007-9080-1
  • Imran M, Khan SA. Nigella sativa L. and COVID-19: a Glance at The Anti-COVID-19 chemical constituents, clinical trials, inventions, and patent literature. Molecules. 2022;27(9):2750. doi:10.3390/molecules27092750
  • Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res. 2003;17(4):299–305. doi:10.1002/ptr.1309
  • Veeramani S, Narayanan AP, Yuvaraj K, et al. Nigella sativa flavonoids surface coated gold NPs (Au-NPs) enhancing antioxidant and anti-diabetic activity. Process Biochem. 2022;114:193–202. doi:10.1016/j.procbio.2021.01.004
  • Parveen A, Farooq MA, Kyunn WW. A new oleanane type saponin from the aerial parts of nigella sativa with anti-oxidant and anti-diabetic potential. Molecules. 2020;25(9):2171. doi:10.3390/molecules25092171
  • Zafar I, Safder A, Imran Afridi H, et al. In silico and in vitro study of bioactive compounds of Nigella sativa for targeting neuropilins in breast cancer. Front Chem. 2023:11. doi:10.3389/fchem.2023.1273149
  • Rathi B, Devanesan S, AlSalhi MS, Ranjith Singh AJ. In-vitro free radical scavenging effect and cytotoxic analysis of Black Cummins and Honey formulation. Saudi J Biol Sci. 2021;28(3):1576–1581. doi:10.1016/j.sjbs.2020.12.051
  • Yuan T, Nahar P, Sharma M, et al. Indazole-type alkaloids from nigella sativa seeds exhibit antihyperglycemic effects via AMPK activation in vitro. J Nat Prod. 2014;77(10):2316–2320. doi:10.1021/np500398m
  • Mehta BK, Mehta P, Gupta M. A new naturally acetylated triterpene saponin from Nigella sativa. Carbohydr Res. 2009;344(1):149–151. doi:10.1016/j.carres.2008.10.004
  • Karaman K. Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: stability of thymoquinone and bioactive properties. Food Chem. 2020;313. doi:10.1016/j.foodchem.2019.126129
  • Almatroudi A, Khadri H, Azam M, et al. Antibacterial, antibiofilm and anticancer activity of biologically synthesized silver nanoparticles using seed extract of Nigella sativa. Processes. 2020;8(4):388. doi:10.3390/PR8040388
  • Salehi B, Quispe C, Imran M, et al. Nigella plants – traditional uses, bioactive phytoconstituents, preclinical and clinical studies. Front Pharmacol. 2021:12. doi:10.3389/fphar.2021.625386
  • Lin J, Gulbagca F, Aygun A, et al. Phyto-mediated synthesis of nanoparticles and their applications on hydrogen generation on NaBH4, biological activities and photodegradation on azo dyes: development of machine learning model. Food and Chemical Toxicology. 2022;163:112972. doi:10.1016/j.fct.2022.112972
  • Adamska A, Stefanowicz-Hajduk J, Renata Ochocka J. Alpha-hederin, the active saponin of nigella sativa, as an anticancer agent inducing apoptosis in the SKOV-3 cell line. Molecules. 2019;24(16):2958. doi:10.3390/molecules24162958
  • Bourgou S, Pichette A, Marzouk B, Legault J. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. S Afr J Bot. 2010;76(2):210–216. doi:10.1016/j.sajb.2009.10.009
  • Bourgou S, Rebey IB, Ben KS, et al. Green solvent to substitute hexane for bioactive lipids extraction from black cumin and basil seeds. Foods. 2021;10(7):1493. doi:10.3390/foods10071493
  • Hameed S, Imran A, Nisa M, et al. Characterization of extracted phenolics from black cumin (Nigella sativa linn), coriander seed (Coriandrum sativum L.), and fenugreek seed (Trigonella foenum-graecum). Int J Food Prop. 2019;22(1):714–726. doi:10.1080/10942912.2019.1599390
  • Soleimanifar M, Niazmand R, Jafari SM. Evaluation of oxidative stability, fatty acid profile, and antioxidant properties of black cumin seed oil and extract. J Food Meas Characteriz. 2019;13(1):383–389. doi:10.1007/s11694-018-9953-7
  • Shaheed KA, Alsirraj MA, Allaith SA, et al. The biological activities of seeds extracts for fenugreek and black cumin and its inhibitory influences toward some pathogens; 2018. Available from: https://pubchem.ncbi.nlm.nih.gov/com-. Accessed May 06, 2024.
  • Dalli M, Azizi SE, Kandsi F, Gseyra N. Evaluation of the in vitro antioxidant activity of different extracts of Nigella sativa L. seeds, and the quantification of their bioactive compounds. In: Materials Today: Proceedings; 2021:7259–7263. doi:10.1016/j.matpr.2020.12.743.
  • Ramadan MF, Asker MMS, Tadros M. Antiradical and antimicrobial properties of cold-pressed black cumin and cumin oils. Eur Food Res Technol. 2012;234(5):833–844. doi:10.1007/s00217-012-1696-9
  • Feng Y, Dunshea FR, Suleria HAR. LC-ESI-QTOF/MS characterization of bioactive compounds from black spices and their potential antioxidant activities. J Food Sci Technol. 2020;57(12):4671–4687. doi:10.1007/s13197-020-04504-4
  • Albakry Z, Karrar E, Mohamed Ahmed IA, et al. A comparative study of black cumin seed (Nigella sativa L.) oils extracted with supercritical fluids and conventional extraction methods. J Food Meas Characteriz. 2023;17(3):2429–2441. doi:10.1007/s11694-022-01802-7
  • Ahlina FN, Anggriani L, Salsabila IA, Jenie RI. Bioactivity of black cumin oil on the senescence of her-2-overexpressing breast cancer cells. Malays App Bio. 2022;51(1):91–98. doi:10.55230/MABJOURNAL.V51I1.2008
  • Sutton KM, Greenshields AL, Hoskin DW. Thymoquinone, a bioactive component of black caraway seeds, causes G1 phase cell cycle arrest and apoptosis in triple-negative breast cancer cells with mutant p53. Nutr Cancer. 2014;66(3):408–418. doi:10.1080/01635581.2013.878739
  • Besra M, Kumar V. In vitro investigation of antimicrobial activities of ethnomedicinal plants against dental caries pathogens. Biotech. 2018;8(5). doi:10.1007/s13205-018-1283-2
  • Qureshi KA, Imtiaz M, Parvez A, et al. In vitro and in silico approaches for the evaluation of antimicrobial activity, time-kill kinetics, and anti-biofilm potential of thymoquinone (2-methyl-5-propan-2-ylcyclohexa-2, 5-diene-1,4-dione) against selected human pathogens. Antibiotics. 2022;11(1):79. doi:10.3390/antibiotics11010079
  • Kokoska J, Vadlejch JLF, Vadlejch JLF, Vadlejch J. The growth-inhibitory effect of thymohydroquinone and thymoquinone on oral pathogenic bacteria in vitro. Planta Med. 2009;75(09):PJ116. doi:10.1055/s-0029-1234921
  • Rusmarilin H, Lubis Z, Lubis LM, Barutu YAP. Potential of natural antioxidants of black cumin seed (Nigella sativa) and sesame seed (Sesamum indicum) extract by microencapsulation methods. In: IOP Conference Series: Earth and Environmental Science. Vol 260. Institute of Physics Publishing; 2019. doi:10.1088/1755-1315/260/1/012097.
  • Oubannin S, Bijla L, Gagour J, et al. A comparative evaluation of proximate composition, elemental profiling and oil physicochemical properties of black cumin (Nigella sativa L.) seeds and argan (Argania spinosa L. Skeels) kernels. Chem Data Collect. 2022;41:100920. doi:10.1016/j.cdc.2022.100920
  • Alamoudi RA, Alamoudi SA, Alamoudi RA. Biological potential of the main component, thymoquinone, of nigella sativa in pulp therapy—in vitro study. Life. 2022;12(9):1434. doi:10.3390/life12091434
  • Shafodino FS, Lusilao JM, Mwapagha LM. Phytochemical characterization and antimicrobial activity of Nigella sativa seeds. PLoS One. 2022;17(8):e0272457. doi:10.1371/journal.pone.0272457
  • Shabestari BN. The comparison of antimicrobial effect of nigella sativa nanoparticle and chlorhexidine emulsion on the most common dental cariogenicic bacteria; 2021.
  • Tiwari AK, Jha S, Singh AK, et al. Innovative investigation of zinc oxide nanoparticles used in dentistry. Crystals. 2022;12(8). doi:10.3390/cryst12081063
  • Rashid M, Ganaie MA, Khan S, et al. Comparative antibacterial study of black cumin oil of Saudi and Syrian origin seeds with the commercial product. J Rep Pharm Sci. 2021;10(1):148–152. doi:10.4103/jrptps.JRPTPS_118_20
  • Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial activity of polyphenols and alkaloids in Middle Eastern plants. Front Microbiol. 2019;10(MAY). doi:10.3389/fmicb.2019.00911
  • Bourgou S, Pichette A, Marzouk B, Legault J. Antioxidant, anti-inflammatory, anticancer and antibacterial activities of extracts from nigella sativa (black cumin) plant parts. J Food Biochem. 2012;36(5):539–546. doi:10.1111/j.1745-4514.2011.00567.x
  • Rostinawati T, Karipaya S, Iskandar Y. Antibacterial activity of ethanol extract of nigella Sativa L. seed against streptococcus mutans. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing; 2019. doi:10.1088/1755-1315/334/1/012050.