79
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Role and Therapeutic Potential of Melatonin in Degenerative Fundus Diseases: Diabetes Retinopathy and Age-Related Macular Degeneration

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 2329-2346 | Received 30 Mar 2024, Accepted 13 Jun 2024, Published online: 18 Jun 2024

References

  • Chen X, Rong SS, Xu Q, et al. Diabetes mellitus and risk of age-related macular degeneration: a systematic review and meta-analysis. PLoS One. 2014;9(9):e108196. doi:10.1371/journal.pone.0108196
  • Pascolini D, Mariotti SP, Pokharel GP, et al. 2002 global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiol. 2004;11(2):67–115. doi:10.1076/opep.11.2.67.28158
  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–116. doi:10.1016/s2214-109x(13)70145-1
  • Heesterbeek TJ, Lorés-Motta L, Hoyng CB, Lechanteur YTE, den Hollander AI. Risk factors for progression of age-related macular degeneration. Ophthalmic Physiol Opt. 2020;40(2):140–170. doi:10.1111/opo.12675
  • Zisimopoulos A, Klavdianou O, Theodossiadis P, Chatziralli I. The role of the microbiome in age-related macular degeneration: a review of the literature. Ophthalmologica. 2021;244(3):173–178. doi:10.1159/000515026
  • Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-de la paz L, et al. Age-related macular degeneration: new paradigms for treatment and management of AMD. Oxid Med Cell Longev. 2018;2018:8374647. doi:10.1155/2018/8374647
  • Das A. Diabetic retinopathy: battling the global epidemic. Indian J Ophthalmol. 2016;64(1):2–3. doi:10.4103/0301-4738.178155
  • Ting DS, Cheung GC, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–277. doi:10.1111/ceo.12696
  • Bourouki E, Dimitriou E, Chatzipantelis A, et al. Co-existence of age-related macular degeneration and diabetic retinopathy in a tertiary referral center in Greece. Cureus. 2022;14(11):e31051. doi:10.7759/cureus.31051
  • Vasey C, McBride J, Penta K. Circadian rhythm dysregulation and restoration: the role of melatonin. Nutrients. 2021;13(10). doi:10.3390/nu13103480
  • Andrews CD, Foster RG, Alexander I, et al. Sleep-wake disturbance related to ocular disease: a systematic review of phase-shifting pharmaceutical therapies. Transl Vis Sci Technol. 2019;8(3):49. doi:10.1167/tvst.8.3.49
  • Rosen R, Hu DN, Perez V, et al. Urinary 6-sulfatoxymelatonin level in age-related macular degeneration patients. Mol Vis. 2009;15:1673–1679.
  • Schmid-Kubista KE, Glittenberg CG, Cezanne M, Holzmann K, Neumaier-Ammerer B, Binder S. Daytime levels of melatonin in patients with age-related macular degeneration. Acta Ophthalmol. 2009;87(1):89–93. doi:10.1111/j.1755-3768.2008.01173.x
  • Tang L, Zhang C, Lu L, et al. Melatonin maintains inner blood-retinal barrier by regulating microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways in experimental diabetic retinopathy. Front Immunol. 2022;13:831660. doi:10.3389/fimmu.2022.831660
  • Bonnefond A, Clément N, Fawcett K, et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet. 2012;44(3):297–301. doi:10.1038/ng.1053
  • Li C, Shi Y, You L, Wang L, Chen ZJ. Melatonin receptor 1A gene polymorphism associated with polycystic ovary syndrome. Gynecol Obstet Invest. 2011;72(2):130–134. doi:10.1159/000323542
  • Mehrzadi S, Hemati K, Reiter RJ, Hosseinzadeh A. Mitochondrial dysfunction in age-related macular degeneration: melatonin as a potential treatment. Expert Opin Ther Targets. 2020;24(4):359–378. doi:10.1080/14728222.2020.1737015
  • Dehdashtian E, Mehrzadi S, Yousefi B, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci. 2018;193:20–33. doi:10.1016/j.lfs.2017.12.001
  • Kaur C, Foulds WS, Ling EA. Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog Retin Eye Res. 2008;27(6):622–647. doi:10.1016/j.preteyeres.2008.09.003
  • Buscemi N, Vandermeer B, Hooton N, et al. The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta-analysis. J Gen Intern Med. 2005;20(12):1151–1158. doi:10.1111/j.1525-1497.2005.0243.x
  • Costa EJ, Lopes RH, Lamy-Freund MT. Permeability of pure lipid bilayers to melatonin. J Pineal Res. 1995;19(3):123–126. doi:10.1111/j.1600-079x.1995.tb00180.x
  • Tosini G, Chaurasia SS, Michael Iuvone P. Regulation of arylalkylamine N-acetyltransferase (AANAT) in the retina. Chronobiol Int. 2006;23(1–2):381–391. doi:10.1080/07420520500482066
  • Bhattacharya S, Patel KK, Dehari D, Agrawal AK, Singh S. Melatonin and its ubiquitous anticancer effects. Mol Cell Biochem. 2019;462(1–2):133–155. doi:10.1007/s11010-019-03617-5
  • Claustrat B, Leston J. Melatonin: physiological effects in humans. Neurochirurgie. 2015;61(2–3):77–84. doi:10.1016/j.neuchi.2015.03.002
  • Tosini G, Baba K, Hwang CK, Iuvone PM. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res. 2012;103:82–89. doi:10.1016/j.exer.2012.08.009
  • Martínez A, Knappskog PM, Haavik J. A structural approach into human tryptophan hydroxylase and its implications for the regulation of serotonin biosynthesis. Curr Med Chem. 2001;8(9):1077–1091. doi:10.2174/0929867013372616
  • Hardeland R. Taxon- and site-specific melatonin catabolism. Molecules. 2017;22(11). doi:10.3390/molecules22112015
  • Bruni O, Angriman M, Melegari MG, Ferri R. Pharmacotherapeutic management of sleep disorders in children with neurodevelopmental disorders. Expert Opin Pharmacother. 2019;20(18):2257–2271. doi:10.1080/14656566.2019.1674283
  • Kurhaluk N, Tkachenko H. Melatonin and alcohol-related disorders. Chronobiol Int. 2020;37(6):781–803. doi:10.1080/07420528.2020.1761372
  • Jauhari A, Baranov SV, Suofu Y, et al. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration. J Clin Invest. 2020;130(6):3124–3136. doi:10.1172/jci135026
  • Brennan R, Jan JE, Lyons CJ. Light, dark, and melatonin: emerging evidence for the importance of melatonin in ocular physiology. Eye. 2007;21(7):901–908. doi:10.1038/sj.eye.6702597
  • Cipolla-Neto J, Amaral FGD. Melatonin as a hormone: new physiological and clinical insights. Endocr Rev. 2018;39(6):990–1028. doi:10.1210/er.2018-00084
  • Drijfhout WJ, Van der linde AG, Kooi SE, Grol CJ, Westerink BH. Norepinephrine release in the rat pineal gland: the input from the biological clock measured by in vivo microdialysis. J Neurochem. 1996;66(2):748–755. doi:10.1046/j.1471-4159.1996.66020748.x
  • Maronde E, Wicht H, Taskén K, et al. CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: involvement of cyclic AMP dependent protein kinase type II. J Pineal Res. 1999;27(3):170–182. doi:10.1111/j.1600-079x.1999.tb00613.x
  • Shin JW. Neuroprotective effects of melatonin in neurodegenerative and autoimmune central nervous system diseases. Encephalitis. 2023;3(2):44–53. doi:10.47936/encephalitis.2022.00094
  • Polyakova VO, Kvetnoy IM, Anderson G, Rosati J, Mazzoccoli G, Linkova NS. Reciprocal interactions of mitochondria and the neuroimmunoendocrine system in neurodegenerative disorders: an important role for melatonin regulation. Front Physiol. 2018;9:199. doi:10.3389/fphys.2018.00199
  • Masters A, Pandi-Perumal SR, Seixas A, Girardin JL, McFarlane SI. Melatonin, the hormone of darkness: from sleep promotion to Ebola treatment. Brain Disord Ther. 2014;4(1). doi:10.4172/2168-975x.1000151
  • Huang CC, Chiou CH, Liu SC, et al. Melatonin attenuates TNF-α and IL-1β expression in synovial fibroblasts and diminishes cartilage degradation: implications for the treatment of rheumatoid arthritis. J Pineal Res. 2019;66(3):e12560. doi:10.1111/jpi.12560
  • Watanabe K, Araki M, Iwasaki H. The embryonic pineal body as a multipotent organ. Microsc Res Tech. 1992;21(3):218–226. doi:10.1002/jemt.1070210305
  • Pires-Lapa MA, Carvalho-Sousa CE, Cecon E, Fernandes PA, Markus RP. β-adrenoceptors trigger melatonin synthesis in phagocytes. Int J Mol Sci. 2018;19(8). doi:10.3390/ijms19082182
  • Won E, Na KS, Kim YK. Associations between melatonin, neuroinflammation, and brain alterations in depression. Int J Mol Sci. 2021;23(1). doi:10.3390/ijms23010305
  • Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev. 2003;55(2):325–395. doi:10.1124/pr.55.2.2
  • Aykan U, Güvel M, Paykal G, Uluoglu C. Neuropharmacologic modulation of the melatonergic system. Explorat Neurosci. 2023;2:287–306. doi:10.37349/en.2023.00029
  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20(2):600–605. doi:10.1523/jneurosci.20-02-00600.2000
  • Abbott KS, Queener HM, Ostrin LA. The ipRGC-driven pupil response with light exposure, refractive error, and sleep. Optom Vis Sci. 2018;95(4):323–331. doi:10.1097/opx.0000000000001198
  • Zawilska JB, Nowak JZ. Regulatory mechanisms in melatonin biosynthesis in retina. Neurochem Int. 1992;20(1):23–36. doi:10.1016/0197-0186(92)90122-8
  • Fujieda H, Scher J, Hamadanizadeh SA, Wankiewicz E, Pang SF, Brown GM. Dopaminergic and GABAergic amacrine cells are direct targets of melatonin: immunocytochemical study of mt1 melatonin receptor in Guinea pig retina. Vis Neurosci. 2000;17(1):63–70. doi:10.1017/s0952523800171068
  • Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A. A review of melatonin, its receptors and drugs. Eurasian J Med. 2016;48(2):135–141. doi:10.5152/eurasianjmed.2015.0267
  • Gianesini C, Hiragaki S, Laurent V, Hicks D, Tosini G. Cone viability is affected by disruption of melatonin receptors signaling. Invest Ophthalmol Vis Sci. 2016;57(1):94–104. doi:10.1167/iovs.15-18235
  • Rosen RB, Hu DN, Chen M, McCormick SA, Walsh J, Roberts JE. Effects of melatonin and its receptor antagonist on retinal pigment epithelial cells against hydrogen peroxide damage. Mol Vis. 2012;18:1640–1648.
  • Liang FQ, Green L, Wang C, Alssadi R, Godley BF. Melatonin protects human retinal pigment epithelial (RPE) cells against oxidative stress. Exp Eye Res. 2004;78(6):1069–1075. doi:10.1016/j.exer.2004.02.003
  • Boatright JH, Rubim NM, Iuvone PM. Regulation of endogenous dopamine release in amphibian retina by melatonin: the role of GABA. Vis Neurosci. 1994;11(5):1013–1018. doi:10.1017/s0952523800003941
  • Scher J, Wankiewicz E, Brown GM, Fujieda H. AII amacrine cells express the MT1 melatonin receptor in human and macaque retina. Exp Eye Res. 2003;77(3):375–382. doi:10.1016/s0014-4835(03)00123-4
  • Ivanova TN, Alonso-Gomez AL, Iuvone PM. Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: relationship to dopamine receptor-mediated inhibition of cAMP formation. Brain Res. 2008;1207:111–119. doi:10.1016/j.brainres.2008.02.025
  • Fukuhara PS, Lee DH, Chwa M, Kuppermann BD, Kenney MC. Effects of melatonin on human Retinal Pigment Epithelial cells (ARPE-19) and Müller cells (MIO-M1) exposed to cobalt chloride (CoCl2) in vitro. Invest Ophthalmol Visual Sci. 2021;62(8):2722.
  • Laurent V, Sengupta A, Sánchez-Bretaño A, Hicks D, Tosini G. Melatonin signaling affects the timing in the daily rhythm of phagocytic activity by the retinal pigment epithelium. Exp Eye Res. 2017;165:90–95. doi:10.1016/j.exer.2017.09.007
  • Wiechmann AF, Yang XL, Wu SM, Hollyfield JG. Melatonin enhances horizontal cell sensitivity in salamander retina. Brain Res. 1988;453(1–2):377–380. doi:10.1016/0006-8993(88)90182-5
  • Yu HS, Hernandez V, Haywood M, Wong CG. Melatonin inhibits the proliferation of retinal pigment epithelial (RPE) cells in vitro. In Vitro Cell Dev Biol Anim. 1993;29a(5):415–418. doi:10.1007/bf02633991
  • Hagström A, Kal Omar R, Williams PA, Stålhammar G. The rationale for treating uveal melanoma with adjuvant melatonin: a review of the literature. BMC Cancer. 2022;22(1):398. doi:10.1186/s12885-022-09464-w
  • Kal Omar R, Hagström A, Stålhammar G. Adjuvant melatonin for uveal melanoma (AMUM): protocol for a randomized open-label phase III study. Trials. 2023;24(1):230. doi:10.1186/s13063-023-07245-9
  • Roberts JE, Wiechmann AF, Hu DN. Melatonin receptors in human uveal melanocytes and melanoma cells. J Pineal Res. 2000;28(3):165–171. doi:10.1034/j.1600-079x.2001.280306.x
  • Ku LC, Sheu ML, Cheng HH, et al. Melatonin protects retinal integrity through mediated immune homeostasis in the sodium iodate-induced mouse model of age-related macular degeneration. Biomed Pharmacother. 2023;161:114476. doi:10.1016/j.biopha.2023.114476
  • Wiechmann AF, Udin SB, Summers Rada JA. Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis. Exp Eye Res. 2004;79(4):585–594. doi:10.1016/j.exer.2004.07.004
  • Wang F, Zhou J, Lu Y, Chu R. Effects of 530 nm green light on refractive status, melatonin, MT1 receptor, and melanopsin in the Guinea pig. Curr Eye Res. 2011;36(2):103–111. doi:10.3109/02713683.2010.526750
  • Zheng W, Chen Y, Zhou X, et al. Regulation of retinal melanopsin on lens-induced myopia in Guinea Pigs. Optom Vis Sci. 2020;97(7):489–495. doi:10.1097/opx.0000000000001529
  • Alkozi HA, Wang X, Perez de Lara MJ, Pintor J. Presence of melanopsin in human crystalline lens epithelial cells and its role in melatonin synthesis. Exp Eye Res. 2017;154:168–176. doi:10.1016/j.exer.2016.11.019
  • Alkozi HA, Perez de Lara MJ, Sánchez-Naves J, Pintor J. TRPV4 stimulation induced melatonin secretion by increasing Arylalkymine N-acetyltransferase (AANAT) protein level. Int J Mol Sci. 2017;18(4). doi:10.3390/ijms18040746
  • Spadea L, Maraone G, Verboschi F, Vingolo EM, Tognetto D. Effect of corneal light scatter on vision: a review of the literature. Int J Ophthalmol. 2016;9(3):459–464. doi:10.18240/ijo.2016.03.24
  • Kiliç A, Selek S, Erel O, Aksoy N. Protective effects of melatonin on oxidative-antioxidative balance and cataract formation in rats. Ann Ophthalmol. 2008;40(1):22–27.
  • Anwar MM, Moustafa MA. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation. Comp Biochem Physiol C Toxicol Pharmacol. 2001;129(1):57–63. doi:10.1016/s1532-0456(01)00180-6
  • Lledó VE, Alkozi HA, Sánchez-Naves J, Fernandez-Torres MA, Guzman-Aranguez A. Melatonin counteracts oxidative damage in lens by regulation of Nrf2 and NLRP3 inflammasome activity. Exp Eye Res. 2022;215:108912. doi:10.1016/j.exer.2021.108912
  • Li C, Tian Y, Yao A, Zha X, Zhang J, Tao Y. Intravitreal delivery of melatonin is protective against the photoreceptor loss in mice: a potential therapeutic strategy for degenerative retinopathy. Front Pharmacol. 2019;10:1633. doi:10.3389/fphar.2019.01633
  • Martin XD, Malina HZ, Brennan MC, Hendrickson PH, Lichter PR. The ciliary body--The third organ found to synthesize indoleamines in humans. Eur J Ophthalmol. 1992;2(2):67–72. doi:10.1177/112067219200200203
  • Chiquet C, Claustrat B, Thuret G, Brun J, Cooper HM, Denis P. Melatonin concentrations in aqueous humor of glaucoma patients. Am J Ophthalmol. 2006;142(2):325–327.e321. doi:10.1016/j.ajo.2006.03.040
  • Alkozi H, Sánchez-Naves J, de Lara MJ, et al. Elevated intraocular pressure increases melatonin levels in the aqueous humour. Acta Ophthalmol. 2017;95(3):e185–e189. doi:10.1111/aos.13253
  • Pintor J, Martin L, Pelaez T, Hoyle CH, Peral A. Involvement of melatonin MT(3) receptors in the regulation of intraocular pressure in rabbits. Eur J Pharmacol. 2001;416(3):251–254. doi:10.1016/s0014-2999(01)00864-0
  • Andrés-Guerrero V, Molina-Martínez IT, Peral A, de Las Heras B, Pintor J, Herrero-Vanrell R. The use of mucoadhesive polymers to enhance the hypotensive effect of a melatonin analogue, 5-MCA-NAT, in rabbit eyes. Invest Ophthalmol Vis Sci. 2011;52(3):1507–1515. doi:10.1167/iovs.10-6099
  • Huete-Toral F, Crooke A, Martínez-águila A, Pintor J. Melatonin receptors trigger cAMP production and inhibit chloride movements in nonpigmented ciliary epithelial cells. J Pharmacol Exp Ther. 2015;352(1):119–128. doi:10.1124/jpet.114.218263
  • Rosenstein RE, Pandi-Perumal SR, Srinivasan V, Spence DW, Brown GM, Cardinali DP. Melatonin as a therapeutic tool in ophthalmology: implications for glaucoma and uveitis. J Pineal Res. 2010;49(1):1–13. doi:10.1111/j.1600-079X.2010.00764.x
  • Gao J, Provencio I, Liu X. Intrinsically photosensitive retinal ganglion cells in glaucoma. Front Cell Neurosci. 2022;16:992747. doi:10.3389/fncel.2022.992747
  • Wang H, Zhang Y, Ding J, Wang N. Changes in the circadian rhythm in patients with primary glaucoma. PLoS One. 2013;8(4):e62841. doi:10.1371/journal.pone.0062841
  • Crooke A, Guzman-Aranguez A, Mediero A, et al. Effect of melatonin and analogues on corneal wound healing: involvement of Mt2 melatonin receptor. Curr Eye Res. 2015;40(1):56–65. doi:10.3109/02713683.2014.914540
  • Wiechmann AF, Hollaway LR, Rada JA. Melatonin receptor expression in Xenopus laevis surface corneal epithelium: diurnal rhythm of lateral membrane localization. Mol Vis. 2009;15:2384–2403.
  • Wahl C, Li T, Takagi Y, Howland H. The effects of light regimes and hormones on corneal growth in vivo and in organ culture. J Anat. 2011;219(6):766–775. doi:10.1111/j.1469-7580.2011.01429.x
  • Sasaki M, Masuda A, Oishi T. Circadian rhythms of corneal mitotic rate, retinal melatonin and immunoreactive visual pigments, and the effects of melatonin on the rhythms in the Japanese quail. J Comp Physiol A. 1995;176(4):465–471. doi:10.1007/bf00196412
  • Ciuffi M, Pisanello M, Pagliai G, et al. Antioxidant protection in cultured corneal cells and whole corneas submitted to UV-B exposure. J Photochem Photobiol B. 2003;71(1–3):59–68. doi:10.1016/j.jphotobiol.2003.07.004
  • Rusciano D, Russo C. The therapeutic trip of melatonin eye drops: from the ocular surface to the retina. Pharmaceuticals. 2024;17(4). doi:10.3390/ph17040441
  • Nopparat C, Chaopae W, Boontem P, Sopha P, Wongchitrat P, Govitrapong P. Melatonin attenuates high glucose-induced changes in beta amyloid precursor protein processing in human neuroblastoma cells. Neurochem Res. 2022;47(9):2568–2579. doi:10.1007/s11064-021-03290-5
  • Chang CC, Huang TY, Chen HY, et al. Protective effect of melatonin against oxidative stress-induced apoptosis and enhanced autophagy in human retinal pigment epithelium cells. Oxid Med Cell Longev. 2018;2018:9015765. doi:10.1155/2018/9015765
  • Jung KH, Hong SW, Zheng HM, et al. Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappaB in rats. J Pineal Res. 2010;48(3):239–250. doi:10.1111/j.1600-079X.2010.00748.x
  • Jung KH, Hong SW, Zheng HM, Lee DH, Hong SS. Melatonin downregulates nuclear erythroid 2-related factor 2 and nuclear factor-kappaB during prevention of oxidative liver injury in a dimethylnitrosamine model. J Pineal Res. 2009;47(2):173–183. doi:10.1111/j.1600-079X.2009.00698.x
  • Jiang T, Chang Q, Cai J, Fan J, Zhang X, Xu G. Protective effects of melatonin on retinal inflammation and oxidative stress in experimental diabetic retinopathy. Oxid Med Cell Longev. 2016;2016:3528274. doi:10.1155/2016/3528274
  • Jiang T, Chang Q, Zhao Z, et al. Melatonin-mediated cytoprotection against hyperglycemic injury in Müller cells. PLoS One. 2012;7(12):e50661. doi:10.1371/journal.pone.0050661
  • Xie M, Hu A, Luo Y, Sun W, Hu X, Tang S. Interleukin-4 and melatonin ameliorate high glucose and interleukin-1β stimulated inflammatory reaction in human retinal endothelial cells and retinal pigment epithelial cells. Mol Vis. 2014;20:921–928.
  • Do Carmo Buonfiglio D, Peliciari-Garcia RA, Do Amaral FG, et al. Early-stage retinal melatonin synthesis impairment in streptozotocin-induced diabetic Wistar rats. Invest Ophthalmol Vis Sci. 2011;52(10):7416–7422. doi:10.1167/iovs.10-6756
  • Chen H, Liu X, Zhu W, et al. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin. Front Aging Neurosci. 2014;6:103. doi:10.3389/fnagi.2014.00103
  • Hikichi T, Tateda N, Miura T. Alteration of melatonin secretion in patients with type 2 diabetes and proliferative diabetic retinopathy. Clin Ophthalmol. 2011;5:655–660. doi:10.2147/opth.S19559
  • Fu Y, Tang M, Fan Y, Zou H, Sun X, Xu X. Anti-apoptotic effects of melatonin in retinal pigment epithelial cells. Front Biosci. 2012;17(4):1461–1468. doi:10.2741/3997
  • Liang FQ, Aleman TS, ZaixinYang CAV, Jacobson SG, Bennett J. Melatonin delays photoreceptor degeneration in the rds/rds mouse. Neuroreport. 2001;12(5):1011–1014. doi:10.1097/00001756-200104170-00029
  • Flynn-Evans EE, Tabandeh H, Skene DJ, Lockley SW. Circadian rhythm disorders and melatonin production in 127 blind women with and without light perception. J Biol Rhythms. 2014;29(3):215–224. doi:10.1177/0748730414536852
  • Tokarz P, Piastowska-Ciesielska AW, Kaarniranta K, Blasiak J. All-trans retinoic acid modulates DNA damage response and the expression of the VEGF-A and MKI67 genes in ARPE-19 cells subjected to oxidative stress. Int J Mol Sci. 2016;17(6). doi:10.3390/ijms17060898
  • Tokarz P, Kaarniranta K, Blasiak J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology. 2013;14(5):461–482. doi:10.1007/s10522-013-9463-2
  • Honda S, Hjelmeland LM, Handa JT. Oxidative stress--induced single-strand breaks in chromosomal telomeres of human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci. 2001;42(9):2139–2144.
  • Lau BW, Tsao GS, So KF, Yip HK. Expression of telomerase reverse transcriptase in adult goldfish retina. J Mol Neurosci. 2007;32(2):160–167. doi:10.1007/s12031-007-0031-6
  • Blasiak J, Reiter RJ, Kaarniranta K. Melatonin in retinal physiology and pathology: the case of age-related macular degeneration. Oxid Med Cell Longev. 2016;2016:6819736. doi:10.1155/2016/6819736
  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res. 2016;61(3):253–278. doi:10.1111/jpi.12360
  • Aranda ML, Fleitas MFG, Dieguez H, et al. Melatonin as a therapeutic resource for inflammatory visual diseases. Curr Neuropharmacol. 2017;15(7):951–962. doi:10.2174/1570159x15666170113122120
  • Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX. Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med. 2009;15(1–2):43–50. doi:10.2119/molmed.2008.00117
  • Siu AW, Reiter RJ, To CH. Pineal indoleamines and vitamin E reduce nitric oxide-induced lipid peroxidation in rat retinal homogenates. J Pineal Res. 1999;27(2):122–128. doi:10.1111/j.1600-079x.1999.tb00606.x
  • Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules. 2015;20(10):18886–18906. doi:10.3390/molecules201018886
  • Bardak H, Uğuz AC, Bardak Y. Protective effects of melatonin and memantine in human retinal pigment epithelium (ARPE-19) cells against 2-ethylpyridine-induced oxidative stress: implications for age-related macular degeneration. Cutan Ocul Toxicol. 2018;37(2):112–120. doi:10.1080/15569527.2017.1354218
  • Yilmaz T, Celebi S, Kükner AS. The protective effects of melatonin, vitamin E and octreotide on retinal edema during ischemia-reperfusion in the Guinea pig retina. Eur J Ophthalmol. 2002;12(6):443–449. doi:10.1177/112067210201200601
  • Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA. Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51(11):5470–5479. doi:10.1167/iovs.10-5429
  • Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: a review. Curr Med Chem. 2015;22(22):2690–2711. doi:10.2174/0929867322666150619104143
  • Bonilla E, Valero N, Chacín-Bonilla L, et al. Melatonin increases interleukin-1beta and decreases tumor necrosis factor alpha in the brain of mice infected with the Venezuelan equine encephalomyelitis virus. Neurochem Res. 2003;28(5):681–686. doi:10.1023/a:1022897314108
  • Manchester LC, Coto-Montes A, Boga JA, et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015;59(4):403–419. doi:10.1111/jpi.12267
  • Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res. 2007;2007:95103. doi:10.1155/2007/95103
  • Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol. 2022;13:967193. doi:10.3389/fimmu.2022.967193
  • Bang J, Chang HW, Jung HR, et al. Melatonin attenuates clock gene cryptochrome1, which may aggravate mouse anti-type II collagen antibody-induced arthritis. Rheumatol Int. 2012;32(2):379–385. doi:10.1007/s00296-010-1641-9
  • Colombo J, Jardim-Perassi BV, Ferreira JPS, et al. Melatonin differentially modulates NF-кB expression in breast and liver cancer cells. Anticancer Agents Med Chem. 2018;18(12):1688–1694. doi:10.2174/1871520618666180131112304
  • Muxel SM, Pires-Lapa MA, Monteiro AW, et al. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One. 2012;7(12):e52010. doi:10.1371/journal.pone.0052010
  • Li SJ, Cheng WL, Kao YH, Chung CC, Trang NN, Chen YJ. Melatonin inhibits NF-κB/CREB/Runx2 signaling and alleviates aortic valve calcification. Front Cardiovasc Med. 2022;9:885293. doi:10.3389/fcvm.2022.885293
  • Mihanfar A, Yousefi B, Azizzadeh B, Majidinia M. Interactions of melatonin with various signaling pathways: implications for cancer therapy. Cancer Cell Int. 2022;22(1):420. doi:10.1186/s12935-022-02825-2
  • Chen F, Liu H, Wang X, et al. Melatonin activates autophagy via the NF-κB signaling pathway to prevent extracellular matrix degeneration in intervertebral disc. Osteoarthritis Cartilage. 2020;28(8):1121–1132. doi:10.1016/j.joca.2020.05.011
  • Xia Y, Chen S, Zeng S, et al. Melatonin in macrophage biology: current understanding and future perspectives. J Pineal Res. 2019;66(2):e12547. doi:10.1111/jpi.12547
  • Qin T, Feng D, Zhou B, et al. Melatonin attenuates lipopolysaccharide-induced immune dysfunction in dendritic cells. Int Immunopharmacol. 2023;120:110282. doi:10.1016/j.intimp.2023.110282
  • Abd-Elhafeez HH, Hassan AHS, Hussein MT. Melatonin administration provokes the activity of dendritic reticular cells in the seminal vesicle of Soay ram during the non-breeding season. Sci Rep. 2021;11(1):872. doi:10.1038/s41598-020-79529-y
  • Lin LW, Wang SW, Huang WC, et al. Melatonin inhibits VEGF-induced endothelial progenitor cell angiogenesis in neovascular age-related macular degeneration. Cells. 2023;12(5). doi:10.3390/cells12050799
  • Zhu Z, Peng R, Shen H, et al. Treatment with melatonin after corneal graft attenuates rejection. Front Pharmacol. 2021;12:778892. doi:10.3389/fphar.2021.778892
  • Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol. 2004;25(3–4):177–195. doi:10.1016/j.yfrne.2004.08.001
  • Osborne NN, Nash MS, Wood JP. Melatonin counteracts ischemia-induced apoptosis in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1998;39(12):2374–2383.
  • Tang L, Zhang C, Yang Q, et al. Melatonin maintains inner blood-retinal barrier via inhibition of p38/TXNIP/NF-κB pathway in diabetic retinopathy. J Cell Physiol. 2021;236(8):5848–5864. doi:10.1002/jcp.30269
  • Huang R, Xu Y, Lu X, et al. Melatonin protects inner retinal neurons of newborn mice after hypoxia-ischemia. J Pineal Res. 2021;71(1):e12716. doi:10.1111/jpi.12716
  • Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M. Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes. 2002;51(7):2241–2248. doi:10.2337/diabetes.51.7.2241
  • Qin T, Feng D, Zhou B, Bai L, Yin Y. Melatonin suppresses LPS-induced oxidative stress in dendritic cells for inflammatory regulation via the Nrf2/HO-1 axis. Antioxidants. 2022;11(10). doi:10.3390/antiox11102012
  • Zheng B, Meng J, Zhu Y, Ding M, Zhang Y, Zhou J. Melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS. J Ovarian Res. 2021;14(1):152. doi:10.1186/s13048-021-00912-y
  • Klettner A, Kampers M, Töbelmann D, Roider J, Dittmar M. The Influence of melatonin and light on VEGF secretion in primary RPE cells. Biomolecules. 2021;11(1). doi:10.3390/biom11010114
  • Yang L, Zhang Y, Ma Y, et al. Effect of melatonin on EGF- and VEGF-induced monolayer permeability of HUVECs. Am J Physiol Heart Circ Physiol. 2019;316(5):H1178–H1191. doi:10.1152/ajpheart.00542.2018
  • Choudhary P, Roy T, Chatterjee A, Mishra VK, Pant S, Swarnakar S. Melatonin rescues swim stress induced gastric ulceration by inhibiting matrix metalloproteinase-3 via down-regulation of inflammatory signaling cascade. Life Sci. 2022;297:120426. doi:10.1016/j.lfs.2022.120426
  • Wiechmann AF, Smith AR. Melatonin receptor RNA is expressed in photoreceptors and displays a diurnal rhythm in Xenopus retina. Brain Res Mol Brain Res. 2001;91(1–2):104–111. doi:10.1016/s0169-328x(01)00134-6
  • Ostrin LA. Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom. 2019;102(2):99–108. doi:10.1111/cxo.12824
  • Luo N, Wang Y, Ma Y, Liu Y, Liu Z. Melatonin alleviates renal injury in diabetic rats by regulating autophagy. Mol Med Rep. 2023;28(5). doi:10.3892/mmr.2023.13101
  • Xu Y, Lu X, Hu Y, et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α-VEGF pathway in oxygen-induced retinopathy mice. J Pineal Res. 2018;64(4):e12473. doi:10.1111/jpi.12473
  • Xu Y, Cui K, Li J, et al. Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway. J Pineal Res. 2020;69(1):e12660. doi:10.1111/jpi.12660
  • Masana MI, Doolen S, Ersahin C, et al. MT(2) melatonin receptors are present and functional in rat caudal artery. J Pharmacol Exp Ther. 2002;302(3):1295–1302. doi:10.1124/jpet.302.3.1295
  • Ting N, Thambyraja A, Sugden D, Scalbert E, Delagrange P, Wilson VG. Pharmacological studies on the inhibitory action of melatonin and putative melatonin analogues on porcine vascular smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 2000;361(3):327–333. doi:10.1007/s002109900198
  • Vandeputte C, Giummelly P, Atkinson J, Delagrange P, Scalbert E, Capdeville-Atkinson C. Melatonin potentiates NE-induced vasoconstriction without augmenting cytosolic calcium concentration. Am J Physiol Heart Circ Physiol. 2001;280(1):H420–H425. doi:10.1152/ajpheart.2001.280.1.H420
  • Meyer P, Pache M, Loeffler KU, et al. Melatonin MT-1-receptor immunoreactivity in the human eye. Br J Ophthalmol. 2002;86(9):1053–1057. doi:10.1136/bjo.86.9.1053
  • Savaskan E, Olivieri G, Brydon L, et al. Cerebrovascular melatonin MT1-receptor alterations in patients with Alzheimer’s disease. Neurosci Lett. 2001;308(1):9–12. doi:10.1016/s0304-3940(01)01967-x
  • Doolen S, Krause DN, Dubocovich ML, Duckles SP. Melatonin mediates two distinct responses in vascular smooth muscle. Eur J Pharmacol. 1998;345(1):67–69. doi:10.1016/s0014-2999(98)00064-8
  • Trinh M, Kalloniatis M, Nivison-Smith L. Vascular changes in intermediate age-related macular degeneration quantified using optical coherence tomography angiography. Transl Vis Sci Technol. 2019;8(4):20. doi:10.1167/tvst.8.4.20
  • Ueno Y, Iwase T, Goto K, et al. Association of changes of retinal vessels diameter with ocular blood flow in eyes with diabetic retinopathy. Sci Rep. 2021;11(1):4653. doi:10.1038/s41598-021-84067-2
  • Arangino S, Cagnacci A, Angiolucci M, et al. Effects of melatonin on vascular reactivity, catecholamine levels, and blood pressure in healthy men. Am J Cardiol. 1999;83(9):1417–1419. doi:10.1016/s0002-9149(99)00112-5
  • Ray CA. Melatonin attenuates the sympathetic nerve responses to orthostatic stress in humans. J Physiol. 2003;551(Pt 3):1043–1048. doi:10.1113/jphysiol.2003.043182
  • Forsling ML, Wheeler MJ, Williams AJ. The effect of melatonin administration on pituitary hormone secretion in man. Clin Endocrinol. 1999;51(5):637–642. doi:10.1046/j.1365-2265.1999.00820.x
  • Yan M, Wang H, Gu Y, Li X, Tao L, Lu P. Melatonin exerts protective effects on diabetic retinopathy via inhibition of Wnt/β-catenin pathway as revealed by quantitative proteomics. Exp Eye Res. 2021;205:108521. doi:10.1016/j.exer.2021.108521
  • Ramezani M, Komaki A, Hashemi-Firouzi N, Mortezaee K, Faraji N, Golipoor Z. Therapeutic effects of melatonin-treated bone marrow mesenchymal stem cells (BMSC) in a rat model of Alzheimer’s disease. J Chem Neuroanat. 2020;108:101804. doi:10.1016/j.jchemneu.2020.101804
  • Yoon YM, Lee JH, Song KH, Noh H, Lee SH. Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease-derived mesenchymal stem/stromal cells via cellular prion proteins. J Pineal Res. 2020;68(3):e12632. doi:10.1111/jpi.12632
  • Lin Y, Ren X, Chen Y, Chen D. Interaction between mesenchymal stem cells and retinal degenerative microenvironment. Front Neurosci. 2020;14:617377. doi:10.3389/fnins.2020.617377
  • Salih M, Shaharuddin B, Abdelrazeg S. A concise review on mesenchymal stem cells for tissue engineering with a perspective on ocular surface regeneration. Curr Stem Cell Res Ther. 2020;15(3):211–218. doi:10.2174/1574888x15666200129145251
  • Madelaine R, Mourrain P. Endogenous retinal neural stem cell reprogramming for neuronal regeneration. Neural Regen Res. 2017;12(11):1765–1767. doi:10.4103/1673-5374.219028
  • Bai C, Li X, Gao Y, et al. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells. J Pineal Res. 2016;61(2):154–167. doi:10.1111/jpi.12334
  • Gao Y, Ma L, Bai C, Zhang X, Yang W. Melatonin promotes self-renewal and nestin expression in neural stem cells from the retina. Histol Histopathol. 2019;34(6):645–654. doi:10.14670/hh-18-065
  • Ping Z, Hu X, Wang L, et al. Melatonin attenuates titanium particle-induced osteolysis via activation of Wnt/β-catenin signaling pathway. Acta Biomater. 2017;51:513–525. doi:10.1016/j.actbio.2017.01.034
  • Giannaccare G, Carnevali A, Senni C, Logozzo L, Scorcia V. Umbilical cord blood and serum for the treatment of ocular diseases: a comprehensive review. Ophthalmol Ther. 2020;9(2):235–248. doi:10.1007/s40123-020-00239-9
  • Yi C, Pan X, Yan H, Guo M, Pierpaoli W. Effects of melatonin in age-related macular degeneration. Ann N Y Acad Sci. 2005;1057:384–392. doi:10.1196/annals.1356.029
  • Harpsøe NG, Andersen LP, Gögenur I, Rosenberg J. Clinical pharmacokinetics of melatonin: a systematic review. Eur J Clin Pharmacol. 2015;71(8):901–909. doi:10.1007/s00228-015-1873-4
  • Seiden DJ, Shah SM. A randomized, crossover, pharmacokinetics evaluation of a novel continuous release and absorption melatonin formulation. Prim Care Companion CNS Disord. 2019;21(4). doi:10.4088/PCC.19m02450
  • Dal Monte M, Cammalleri M, Amato R, et al. A topical formulation of melatoninergic compounds exerts strong hypotensive and neuroprotective effects in a rat model of hypertensive glaucoma. Int J Mol Sci. 2020;21(23). doi:10.3390/ijms21239267
  • Tao Y, Hu B, Ma Z, et al. Intravitreous delivery of melatonin affects the retinal neuron survival and visual signal transmission: in vivo and ex vivo study. Drug Deliv. 2020;27(1):1386–1396. doi:10.1080/10717544.2020.1818882
  • Yu H, Wu W, Lin X, Feng Y. Polysaccharide-based nanomaterials for ocular drug delivery: a perspective. Front Bioeng Biotechnol. 2020;8:601246. doi:10.3389/fbioe.2020.601246
  • Ahn JH, Kim HD, Abuzar SM, et al. Intracorneal melatonin delivery using 2-hydroxypropyl-β-cyclodextrin ophthalmic solution for granular corneal dystrophy type 2. Int J Pharm. 2017;529(1–2):608–616. doi:10.1016/j.ijpharm.2017.07.016
  • Musumeci T, Bucolo C, Carbone C, Pignatello R, Drago F, Puglisi G. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int J Pharm. 2013;440(2):135–140. doi:10.1016/j.ijpharm.2012.10.014
  • Carbone C, Manno D, Serra A, et al. Innovative hybrid vs polymeric nanocapsules: the influence of the cationic lipid coating on the ”4S”. Colloids Surf B Biointerfaces. 2016;141:450–457. doi:10.1016/j.colsurfb.2016.02.002
  • Bessone CDV, Martinez SM, Luna JD, et al. Neuroprotective effect of melatonin loaded in ethylcellulose nanoparticles applied topically in a retinal degeneration model in rabbits. Exp Eye Res. 2020;200:108222. doi:10.1016/j.exer.2020.108222
  • Arranz-Romera A, Davis BM, Bravo-Osuna I, et al. Simultaneous co-delivery of neuroprotective drugs from multi-loaded PLGA microspheres for the treatment of glaucoma. J Control Release. 2019;297:26–38. doi:10.1016/j.jconrel.2019.01.012