128
Views
10
CrossRef citations to date
0
Altmetric
Original Research

The effect of A1 adenosine receptor in diabetic megalin loss with caspase-1/IL18 signaling

, , , , , , , , & show all
Pages 1583-1596 | Published online: 28 Aug 2019

References

  • Garcia-Garcia PM , Getino-Melian MA , Dominguez-Pimentel V , Navarro-Gonzalez JF . Inflammation in diabetic kidney disease. World J Diabetes . 2014;5(4):431–443. doi:10.4239/wjd.v5.i4.431 25126391
  • Gallagher H , Suckling RJ . Diabetic nephropathy: where are we on the journey from pathophysiology to treatment? Diabetes Obes Metab . 2016;18(7):641–647. doi:10.1111/dom.12630 26743887
  • Balakumar P , Arora MK , Reddy J , Anand-Srivastava MB . Pathophysiology of diabetic nephropathy: involvement of multifaceted signalling mechanism. J Cardiovasc Pharmacol . 2009;54(2):129–138. doi:10.1097/FJC.0b013e3181ad2190 19528810
  • Tramonti G , Kanwar YS . Review and discussion of tubular biomarkers in the diagnosis and management of diabetic nephropathy. Endocrine . 2013;43(3):494–503. doi:10.1007/s12020-012-9820-y 23086402
  • Mori KP , Yokoi H , Kasahara M , et al. Increase of total nephron albumin filtration and reabsorption in diabetic nephropathy. J Am Soc Nephrol . 2017;28(1):278–289. doi:10.1681/ASN.2015101168 27382987
  • Dickson LE , Wagner MC , Sandoval RM , Molitoris BA . The proximal tubule and albuminuria: really! J Am Soc Nephrol . 2014;25(3):443–453. doi:10.1681/ASN.2013090950 24408874
  • Nielsen R , Christensen EI , Birn H . Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int . 2016;89(1):58–67. doi:10.1016/j.kint.2015.11.007 26759048
  • Thrailkill KM , Nimmo T , Bunn RC , et al. Microalbuminuria in type 1 diabetes is associated with enhanced excretion of the endocytic multiligand receptors megalin and cubilin. Diabetes Care . 2009;32(7):1266–1268. doi:10.2337/dc09-0112 19366958
  • Mulay SR , Linkermann A , Anders HJ . Necroinflammation in kidney disease. J Am Soc Nephrol . 2016;27(1):27–39. doi:10.1681/ASN.2015040405 26334031
  • Zhu Y , Cui H , Xia Y , Gan H . RIPK3-mediated necroptosis and apoptosis contributes to renal tubular cell progressive loss and chronic kidney disease progression in rats. PLoS One . 2016;11(6):e0156729. doi:10.1371/journal.pone.0156729 27281190
  • Xu Y , Ma H , Shao J , et al. A role for tubular necroptosis in cisplatin-induced AKI. J Am Soc Nephrol . 2015;26(11):2647–2658. doi:10.1681/ASN.2014080741 25788533
  • Xiao X , Du C , Yan Z , Shi Y , Duan H , Ren Y . Inhibition of necroptosis attenuates kidney inflammation and interstitial fibrosis induced by unilateral ureteral obstruction. Am J Nephrol . 2017;46(2):131–138. doi:10.1159/000478746 28723681
  • Vallon V , Osswald H . Adenosine receptors and the kidney. Handb Exp Pharmacol . 2009;(193):443–470. doi:10.1007/978-3-540-89615-9_15 19639291
  • Osswald H , Muhlbauer B , Schenk F . Adenosine mediates tubuloglomerular feedback response: an element of metabolic control of kidney function. Kidney Int Suppl . 1991;32:S128–S131.1881037
  • Faulhaber-Walter R , Chen L , Oppermann M , et al. Lack of A1 adenosine receptors augments diabetic hyperfiltration and glomerular injury. J Am Soc Nephrol . 2008;19(4):722–730. doi:10.1681/ASN.2007060721 18256360
  • Lee HT , Gallos G , Nasr SH , Emala CW . A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol . 2004;15(1):102–111. doi:10.1097/01.asn.0000102474.68613.ae 14694162
  • Jiang L , Chen C , Yuan T , et al. Clinical severity of Gitelman syndrome determined by serum magnesium. Am J Nephrol . 2014;39(4):357–366. doi:10.1159/000360773 24776766
  • Wang J , Wen Y , Zhou M , et al. Ectopic germinal center and megalin defect in primary Sjogren syndrome with renal Fanconi syndrome. Arthritis Res Ther . 2017;19(1):120. doi:10.1186/s13075-017-1317-x 28577559
  • Sun D , Samuelson LC , Yang T , et al. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci U S A . 2001;98(17):9983–9988. doi:10.1073/pnas.171317998 11504952
  • Tesch GH , Allen TJ . Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology . 2007;12(3):261–266. doi:10.1111/j.1440-1797.2007.00796.x 17498121
  • Breyer MD , Bottinger E , Brosius FC 3rd , et al. Mouse models of diabetic nephropathy. J Am Soc Nephrol . 2005;16(1):27–45. doi:10.1681/ASN.2004080648 15563560
  • Chen L , Faulhaber-Walter R , Wen Y , et al. Renal failure in mice with Gsalpha deletion in juxtaglomerular cells. Am J Nephrol . 2010;32(1):83–94. doi:10.1159/000314635 20551626
  • Chen L , Kim SM , Oppermann M , et al. Regulation of renin in mice with Cre recombinase-mediated deletion of G protein Gsalpha in juxtaglomerular cells. Am J Physiol Renal Physiol . 2007;292(1):F27–F37. doi:10.1152/ajprenal.00193.2006 16822937
  • Schena FP , Gesualdo L . Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol . 2005;16 Suppl 1:S30–S33. doi:10.1681/asn.2004110970 15938030
  • Perkins BA , Ficociello LH , Roshan B , Warram JH , Krolewski AS . In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int . 2010;77(1):57–64. doi:10.1038/ki.2009.399 19847154
  • Christensen EI , Birn H . Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol . 2002;3(4):256–266. doi:10.1038/nrm778 11994745
  • Gajera CR , Emich H , Lioubinski O , et al. LRP2 in ependymal cells regulates BMP signaling in the adult neurogenic niche. J Cell Sci . 2010;123(Pt 11):1922–1930. doi:10.1242/jcs.065912 20460439
  • Kur E , Christa A , Veth KN , et al. Loss of Lrp2 in zebrafish disrupts pronephric tubular clearance but not forebrain development. Dev Dyn . 2011;240(6):1567–1577. doi:10.1002/dvdy.22624 21455927
  • De S , Kuwahara S , Hosojima M , et al. Exocytosis-mediated urinary full-length megalin excretion is linked with the pathogenesis of diabetic nephropathy. Diabetes . 2017;66(5):1391–1404. doi:10.2337/db16-1031 28289043
  • Sirac C , Bridoux F , Essig M , Devuyst O , Touchard G , Cogne M . Toward understanding renal Fanconi syndrome: step by step advances through experimental models. Contrib Nephrol . 2011;169:247–261. doi:10.1159/000313962 21252524
  • Saito A , Nagai R , Tanuma A , et al. Role of megalin in endocytosis of advanced glycation end products: implications for a novel protein binding to both megalin and advanced glycation end products. J Am Soc Nephrol . 2003;14(5):1123–1131. doi:10.1097/01.asn.0000062962.51879.f8 12707383
  • Li XC , Zhuo JL . Mechanisms of AT1a receptor-mediated uptake of angiotensin II by proximal tubule cells: a novel role of the multiligand endocytic receptor megalin. Am J Physiol Renal Physiol . 2014;307(2):F222–F233. doi:10.1152/ajprenal.00693.2013 24740791
  • Takeyama A , Sato H , Soma-Nagae T , et al. Megalin is downregulated via LPS-TNF-alpha-ERK1/2 signaling pathway in proximal tubule cells. Biochem Biophys Res Commun . 2011;407(1):108–112. doi:10.1016/j.bbrc.2011.02.118 21371423
  • Pasparakis M , Vandenabeele P . Necroptosis and its role in inflammation. Nature . 2015;517(7534):311–320. doi:10.1038/nature14191 25592536
  • Ralston JC , Lyons CL , Kennedy EB , Kirwan AM , Roche HM . Fatty acids and NLRP3 inflammasome-mediated inflammation in metabolic tissues. Annu Rev Nutr . 2017;37:77–102. doi:10.1146/annurev-nutr-071816-064836 28826373
  • Qiu YY , Tang LQ . Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol Res . 2016;114:251–264. doi:10.1016/j.phrs.2016.11.004 27826011
  • Elsherbiny NM , Al-Gayyar MM . The role of IL-18 in type 1 diabetic nephropathy: the problem and future treatment. Cytokine . 2016;81:15–22. doi:10.1016/j.cyto.2016.01.014 26836949
  • Zhuang H , Han J , Cheng L , Liu SL . A positive causal influence of IL-18 levels on the risk of T2DM: a mendelian randomization study. Front Genet . 2019;10:295. doi:10.3389/fgene.2019.00295 31024619
  • Dhalla AK , Chisholm JW , Reaven GM , Belardinelli L . A1 adenosine receptor: role in diabetes and obesity In: Wilson C, Mustafa S, editors. Adenosine Receptors in Health and Disease. Handbook of Experimental Pharmacology . Heidelberg: Springer; 2009:271–295.
  • Elmenhorst D , Meyer PT , Winz OH , et al. Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci . 2007;27(9):2410–2415. doi:10.1523/JNEUROSCI.5066-06.2007 17329439
  • Chen C , Ma X , Yang C , et al. Hypoxia potentiates LPS-induced inflammatory response and increases cell death by promoting NLRP3 inflammasome activation in pancreatic beta cells. Biochem Biophys Res Commun . 2018;495(4):2512–2518. doi:10.1016/j.bbrc.2017.12.134 29278702
  • Li X , Zeng L , Cao C , et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res . 2017;350(2):327–335. doi:10.1016/j.yexcr.2016.12.006 27964927
  • Chen Y , Wang L , Pitzer AL , Li X , Li PL , Zhang Y . Contribution of redox-dependent activation of endothelial Nlrp3 inflammasomes to hyperglycemia-induced endothelial dysfunction. J Mol Med (Berl). 2016;94(12):1335–1347. doi:10.1007/s00109-016-1481-5
  • Ngamsri KC , Wagner R , Vollmer I , Stark S , Reutershan J . Adenosine receptor A1 regulates polymorphonuclear cell trafficking and microvascular permeability in lipopolysaccharide-induced lung injury. J Immunol . 2010;185(7):4374–4384. doi:10.4049/jimmunol.1000433 20729330
  • DeOliveira CC , Paiva Caria CR , Ferreira Gotardo EM , Ribeiro ML , Gambero A . Role of A1 and A2A adenosine receptor agonists in adipose tissue inflammation induced by obesity in mice. Eur J Pharmacol . 2017;799:154–159. doi:10.1016/j.ejphar.2017.02.017 28202393