350
Views
27
CrossRef citations to date
0
Altmetric
Review

Therapeutic targets of hypercholesterolemia: HMGCR and LDLR

, , &
Pages 1543-1553 | Published online: 21 Aug 2019

References

  • Mazein A , Watterson S , Gibbs HC , et al. Regulation and feedback of cholesterol metabolism. Nature Precedings . 2011;59(2):473–474.
  • Payne AH , Hales DB . Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev . 2004;25(6):947–970. doi:10.1210/er.2003-0030 15583024
  • Russell DW . The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem . 2003;72:137–174. doi:10.1146/annurev.biochem.72.121801.161712 12543708
  • Deichmann R , Lavie C , Andrews S . Coenzyme q10 and statin-induced mitochondrial dysfunction. Ochsner J . 2010;10(1):16–21.21603349
  • Garrido-Maraver J , Cordero MD , Oropesa-Avila M , et al. Coenzyme q10 therapy. Mol Syndromol . 2014;5(3–4):187–197. doi:10.1159/000360101 25126052
  • Kaminska J , Grabinska K , Kwapisz M , et al. The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis. FEMS Yeast Res . 2002;2(1):31–37. doi:10.1111/j.1567-1364.2002.tb00066.x 12702319
  • Young NL , Lopez DR , McNamara DJ . Contributions of absorbed dietary cholesterol and cholesterol synthesized in small intestine to hypercholesterolemia in diabetic rats. Diabetes . 1988;37(8):1151–1156. doi:10.2337/diab.37.8.1151 3391347
  • Balasubramaniam S , Goldstein JL , Brown MS . Regulation of cholesterol synthesis in rat adrenal gland through coordinate control of 3-hydroxy-3-methylglutaryl coenzyme A synthase and reductase activities. Proc Natl Acad Sci U S A . 1977;74(4):1421–1425. doi:10.1073/pnas.74.4.1421 16260
  • Hrydziuszko O , Wrona A , Balbus J , Kubica K . Mathematical two-compartment model of human cholesterol transport in application to high blood cholesterol diagnosis and treatment. Electron Notes Theor Comput Sci . 2014;306:19–30. doi:10.1016/j.entcs.2014.06.012
  • Grundy SM . Absorption and metabolism of dietary cholesterol. Annu Rev Nutr . 1983;3:71–96. doi:10.1146/annurev.nu.03.070183.000443 6357243
  • Goldstein JL , Brown MS . Regulation of the mevalonate pathway. Nature . 1990;343(6257):425–430. doi:10.1038/343425a0 1967820
  • Goedeke L , Fernandez-Hernando C . Regulation of cholesterol homeostasis. Cell Mol Life Sci . 2012;69(6):915–930. doi:10.1007/s00018-011-0857-5 22009455
  • Wang HH , Garruti G , Liu M , Portincasa P , Wang DQ . Cholesterol and lipoprotein metabolism and atherosclerosis: recent advances in reverse cholesterol transport. Ann Hepatol . 2017;16 Suppl 1:S27–S42. doi:10.5604/01.3001.0010.5495
  • Masana L , Girona J , Ibarretxe D , et al. Clinical and pathophysiological evidence supporting the safety of extremely low LDL levels-The zero-LDL hypothesis. J Clin Lipidol . 2018;12(2):292–299 e293. doi:10.1016/j.jacl.2017.12.018 29398429
  • Zhang Y , Ma KL , Ruan XZ , Liu BC . Dysregulation of the low-density lipoprotein receptor pathway is involved in lipid disorder-mediated organ injury. Int J Biol Sci . 2016;12(5):569–579. doi:10.7150/ijbs.14027 27019638
  • Baigent C , Keech A , Kearney PM , et al.. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet . 2005;366(9493):1267–1278. doi:10.1016/S0140-6736(05)67394-1 16214597
  • Martin MJ , Hulley SB , Browner WS , Kuller LH , Wentworth D . Serum cholesterol, blood pressure, and mortality: implications from a cohort of 361,662 men. Lancet . 1986;2(8513):933–936. doi:10.1016/s0140-6736(86)90597-0 2877128
  • Shepherd J , Cobbe SM , Ford I , et al; West of Scotland Coronary Prevention Study Group. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med . 1995;333(20):1301–1307. doi:10.1056/NEJM199511163332001 7566020
  • Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA . 2001;285(19):2486–2497. doi:10.1001/jama.285.19.2486 11368702
  • Steinberg D . Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med . 2002;8(11):1211–1217. doi:10.1038/nm1102-1211 12411947
  • Maxfield FR , Tabas I . Role of cholesterol and lipid organization in disease. Nature . 2005;438(7068):612–621. doi:10.1038/nature04399 16319881
  • Grundy SM , Stone NJ , Bailey AL , et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol . 2019;73(24):3168–3209. doi: 10.1016/j.jacc.2018.11.002 30423391
  • Cholesterol Treatment Trialists C, Baigent C , Blackwell L , et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet . 2010;376(9753):1670–1681. doi:10.1016/S0140-6736(10)61350-5 21067804
  • Sabatine MS , Leiter LA , Wiviott SD , et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol . 2017;5(12):941–950. doi:10.1016/S2213-8587(17)30313-3 28927706
  • Humphries SE , Tata F , Henry I , et al. The isolation, characterisation, and chromosomal assignment of the gene for human 3-hydroxy-3-methylglutaryl coenzyme A reductase, (HMG-CoA reductase). Hum Genet . 1985;71(3):254–258. doi:10.1007/bf00284585 2998972
  • Medina MW , Gao F , Ruan W , Rotter JI , Krauss RM . Alternative splicing of 3-hydroxy-3-methylglutaryl coenzyme A reductase is associated with plasma low-density lipoprotein cholesterol response to simvastatin. Circulation . 2008;118(4):355–362.18559695
  • Brown MS , Goldstein JL . Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res . 1980;21(5):505–517.6995544
  • Faust JR , Luskey KL , Chin DJ , Goldstein JL , Brown MS . Regulation of synthesis and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by low density lipoprotein and 25-hydroxycholesterol in UT-1 cells. Proc Natl Acad Sci U S A . 1982;79(17):5205–5209. doi:10.1073/pnas.79.17.5205 6957860
  • Beg ZH , Stonik JA , Brewer HB Jr. 3-Hydroxy-3-methylglutaryl coenzyme A reductase: regulation of enzymatic activity by phosphorylation and dephosphorylation. Proc Natl Acad Sci U S A . 1978;75(8):3678–3682. doi:10.1073/pnas.75.8.3678 278983
  • Hwang S , Hartman IZ , Calhoun LN , et al. Contribution of accelerated degradation to feedback regulation of 3-Hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol metabolism in the liver. J Biol Chem . 2016;291(26):13479–13494. doi:10.1074/jbc.M116.728469 27129778
  • Song BL , Sever N , DeBose-Boyd RA . Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol Cell . 2005;19(6):829–840. doi:10.1016/j.molcel.2005.08.009 16168377
  • Istvan ES , Palnitkar M , Buchanan SK , Deisenhofer J . Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. Embo J . 2000;19(5):819–830. doi:10.1093/emboj/19.5.819 10698924
  • Omkumar RV , Darnay BG , Rodwell VW . Modulation of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA reductase activity by phosphorylation. Role of serine 871. J Biol Chem . 1994;269(9):6810–6814.8120043
  • Ness GC , Holland RC , Lopez D . Selective compensatory induction of hepatic HMG-CoA reductase in response to inhibition of cholesterol absorption. Exp Biol Med (Maywood) . 2006;231(5):559–565. doi:10.1177/153537020623100510 16636304
  • Cao J , Wang J , Qi W , et al. Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab . 2007;6(2):115–128. doi:10.1016/j.cmet.2007.07.002 17681147
  • Brown MS , Goldstein JL . The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell . 1997;89(3):331–340. doi:10.1016/s0092-8674(00)80213-5 9150132
  • Nohturfft A , Yabe D , Goldstein JL , Brown MS , Espenshade PJ . Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell . 2000;102(3):315–323. doi:10.1016/s0092-8674(00)00037-4 10975522
  • Gao Y , Zhou Y , Goldstein JL , Brown MS , Radhakrishnan A . Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis. J Biol Chem . 2017;292(21):8729–8737. doi:10.1074/jbc.M117.783894 28377508
  • Hua X , Nohturfft A , Goldstein JL , Brown MS . Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell . 1996;87(3):415–426. doi:10.1016/s0092-8674(00)81362-8 8898195
  • Yang T , Goldstein JL , Brown MS . Overexpression of membrane domain of SCAP prevents sterols from inhibiting SCAP.SREBP exit from endoplasmic reticulum. J Biol Chem . 2000;275(38):29881–29886. doi:10.1074/jbc.M005439200 10896675
  • Yang T , Espenshade PJ , Wright ME , et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell . 2002;110(4):489–500. doi:10.1016/s0092-8674(02)00872-3 12202038
  • Theesfeld CL , Pourmand D , Davis T , Garza RM , Hampton RY . The sterol-sensing domain (SSD) directly mediates signal-regulated endoplasmic reticulum-associated degradation (ERAD) of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase isozyme Hmg2. J Biol Chem . 2011;286(30):26298–26307. doi:10.1074/jbc.M111.244798 21628456
  • Xu L , Bai Q , Rodriguez-Agudo D , et al. Regulation of hepatocyte lipid metabolism and inflammatory response by 25-hydroxycholesterol and 25-hydroxycholesterol-3-sulfate. Lipids . 2010;45(9):821–832. doi:10.1007/s11745-010-3451-y 20700770
  • Bai Q , Xu L , Kakiyama G , et al. Sulfation of 25-hydroxycholesterol by SULT2B1b decreases cellular lipids via the LXR/SREBP-1c signaling pathway in human aortic endothelial cells. Atherosclerosis . 2011;214(2):350–356. doi:10.1016/j.atherosclerosis.2010.11.021 21146170
  • Leichner GS , Avner R , Harats D , Roitelman J . Metabolically regulated endoplasmic reticulum-associated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase: evidence for requirement of a geranylgeranylated protein. J Biol Chem . 2011;286(37):32150–32161. doi:10.1074/jbc.M111.278036 21778231
  • Alarcon VB , Marikawa Y . Statins inhibit blastocyst formation by preventing geranylgeranylation. Mol Hum Reprod . 2016;22(5):350–363. doi:10.1093/molehr/gaw011 26908642
  • Zhong WB , Wang CY , Chang TC , Lee WS . Lovastatin induces apoptosis of anaplastic thyroid cancer cells via inhibition of protein geranylgeranylation and de novo protein synthesis. Endocrinology . 2003;144(9):3852–3859. doi:10.1210/en.2003-0098 12933658
  • Zhang X , Song Y , Feng M , et al. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. J Lipid Res . 2015;56(5):963–971. doi:10.1194/jlr.M047654 25713102
  • Beg ZH , Brewer HB Jr. Modulation of rat liver 3-hydroxy-3-methylglutaryl-CoA reductase activity by reversible phosphorylation. Fed Proc . 1982;41(10):2634–2638.6286363
  • Beg ZH , Stonik JA , Brewer HB Jr. In vivo modulation of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase, reductase kinase, and reductase kinase kinase by mevalonolactone. Proc Natl Acad Sci U S A . 1984;81(23):7293–7297. doi:10.1073/pnas.81.23.7293 6594693
  • Clarke PR , Hardie DG . Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. Embo J . 1990;9(8):2439–2446.2369897
  • Zang M , Zuccollo A , Hou X , et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem . 2004;279(46):47898–47905. doi:10.1074/jbc.M408149200 15371448
  • Li Y , Xu S , Mihaylova MM , et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab . 2011;13(4):376–388.21459323
  • Salpeter SR , Buckley NS , Kahn JA , Salpeter EE . Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am J Med . 2008;121(2):149–157 e142. doi:10.1016/j.amjmed.2007.09.016 18261504
  • Beg ZH , Stonik JA , Brewer HB Jr. Phosphorylation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and modulation of its enzymic activity by calcium-activated and phospholipid-dependent protein kinase. J Biol Chem . 1985;260(3):1682–1687.3155737
  • Beg ZH , Stonik JA , Brewer HB Jr. Phosphorylation and modulation of the enzymic activity of native and protease-cleaved purified hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase by a calcium/calmodulin-dependent protein kinase. J Biol Chem . 1987;262(27):13228–13240.3308873
  • Sever N , Song BL , Yabe D , Goldstein JL , Brown MS , DeBose-Boyd RA . Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J Biol Chem . 2003;278(52):52479–52490. doi:10.1074/jbc.M310053200 14563840
  • Morris LL , Hartman IZ , Jun DJ , Seemann J , DeBose-Boyd RA . Sequential actions of the AAA-ATPase valosin-containing protein (VCP)/p97 and the proteasome 19 S regulatory particle in sterol-accelerated, endoplasmic reticulum (ER)-associated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem . 2014;289(27):19053–19066. doi:10.1074/jbc.M114.576652 24860107
  • Liu TF , Tang JJ , Li PS , et al. Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. Cell Metab . 2012;16(2):213–225. doi:10.1016/j.cmet.2012.06.014 22863805
  • Milne JC , Lambert PD , Schenk S , et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature . 2007;450(7170):712–716. doi:10.1038/nature06261 18046409
  • Walker AK , Yang F , Jiang K , et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev . 2010;24(13):1403–1417. doi:10.1101/gad.1901210 20595232
  • Jiang LY , Jiang W , Tian N , et al. Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. J Biol Chem . 2018;293(11):4047–4055. doi:10.1074/jbc.RA117.001260 29374057
  • Hartman IZ , Liu P , Zehmer JK , et al. Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J Biol Chem . 2010;285(25):19288–19298. doi:10.1074/jbc.M110.134213 20406816
  • Pertusa M , Morenilla-Palao C , Carteron C , Viana F , Cabedo H . Transcriptional control of cholesterol biosynthesis in Schwann cells by axonal neuregulin 1. J Biol Chem . 2007;282(39):28768–28778. doi:10.1074/jbc.M701878200 17652086
  • Meng Y , Lv PP , Ding GL , et al. High maternal serum estradiol levels induce dyslipidemia in human newborns via a hepatic HMGCR estrogen response element. Sci Rep . 2015;5:10086. doi:10.1038/srep10086 25961186
  • Akadam-Teker B , Kurnaz O , Coskunpinar E , et al. The effects of age and gender on the relationship between HMGCR promoter-911 SNP (rs33761740) and serum lipids in patients with coronary heart disease. Gene . 2013;528(2):93–98. doi:10.1016/j.gene.2013.07.056 23933271
  • Porcellini E , Calabrese E , Guerini F , et al. The hydroxy-methyl-glutaryl CoA reductase promoter polymorphism is associated with Alzheimer’s risk and cognitive deterioration. Neurosci Lett . 2007;416(1):66–70. doi:10.1016/j.neulet.2007.01.046 17284348
  • Keller L , Murphy C , Wang HX , et al. A functional polymorphism in the HMGCR promoter affects transcriptional activity but not the risk for Alzheimer disease in Swedish populations. Brain Res . 2010;1344:185–191. doi:10.1016/j.brainres.2010.04.073 20450896
  • Chang XL , Tan L , Tan MS , et al. Association of HMGCR polymorphism with late-onset Alzheimer’s disease in Han Chinese. Oncotarget . 2016;7(16):22746–22751. doi:10.18632/oncotarget.8176 27009838
  • Leduc V , Theroux L , Dea D , Dufour R , Poirier J . Effects of rs3846662 variants on HMGCR mRNA and protein levels and on markers of Alzheimer’s disease pathology. J Mol Neurosci . 2016;58(1):109–119. doi:10.1007/s12031-015-0666-7 26541602
  • Burkhardt R , Kenny EE , Lowe JK , et al. Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon13. Arterioscler Thromb Vasc Biol . 2008;28(11):2078–2084. doi:10.1161/ATVBAHA.108.172288 18802019
  • Cao L , Wang HF , Tan L , et al. Alzheimer’s Disease Neuroimaging I. Effect of HMGCR genetic variation on neuroimaging biomarkers in healthy, mild cognitive impairment and Alzheimer’s disease cohorts. Oncotarget . 2016;7(12):13319–13327. doi:10.18632/oncotarget.7797 26950278
  • Ying S , Sun YM , Liu XM , An CY , Gao YY . Effect of ScrF I polymorphism in the 2nd intron of the HMGCR gene on lipid-lowering response to simvastatin in Chinese diabetic patients. Biochem Biophys Res Commun . 2007;363(2):395–398. doi:10.1016/j.bbrc.2007.08.182 17870053
  • Leduc V , Bourque L , Poirier J , Dufour R . Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. Pharmacogenet Genomics . 2016;26(1):1–11. doi:10.1097/FPC.0000000000000178 26466344
  • Cuevas A , Fernandez C , Ferrada L , et al. HMGCR rs17671591 SNP determines lower plasma LDL-C after atorvastatin therapy in Chilean individuals. Basic Clin Pharmacol Toxicol . 2016;118(4):292–297. doi:10.1111/bcpt.12493 26408409
  • Abifadel M , Rabes JP , Jambart S , et al. The molecular basis of familial hypercholesterolemia in Lebanon: spectrum of LDLR mutations and role of PCSK9 as a modifier gene. Hum Mutat . 2009;30(7):E682–E691. doi:10.1002/humu.21002 19319977
  • Tichy L , Freiberger T , Zapletalova P , Soska V , Ravcukova B , Fajkusova L . The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotype-phenotype correlations. Atherosclerosis . 2012;223(2):401–408. doi:10.1016/j.atherosclerosis.2012.05.014 22698793
  • Benito-Vicente A , Uribe KB , Jebari S , Galicia-Garcia U , Ostolaza H , Martin C . Validation of LDLr activity as a tool to improve genetic diagnosis of familial hypercholesterolemia: a retrospective on functional characterization of LDLr variants. Int J Mol Sci . 2018;19(6):1676. doi:10.3390/ijms19061676
  • Benito-Vicente A , Alves AC , Etxebarria A , Medeiros AM , Martin C , Bourbon M . The importance of an integrated analysis of clinical, molecular, and functional data for the genetic diagnosis of familial hypercholesterolemia. Genet Med . 2015;17(12):980–988. doi:10.1038/gim.2015.14 25741862
  • Beheshti S , Madsen CM , Varbo A , Benn M , Nordestgaard BG . Relationship of familial hypercholesterolemia and high low-density lipoprotein cholesterol to ischemic stroke. Circulation . 2018;138(6):578–589. doi:10.1161/CIRCULATIONAHA.118.033470 29593013
  • Nakaya H , Summers BD , Nicholson AC , Gotto AM Jr , Hajjar DP , Han J . Atherosclerosis in LDLR-knockout mice is inhibited, but not reversed, by the PPARgamma ligand pioglitazone. Am J Pathol . 2009;174(6):2007–2014. doi:10.2353/ajpath.2009.080611 19435790
  • Ishibashi S , Brown MS , Goldstein JL , Gerard RD , Hammer RE , Herz J . Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest . 1993;92(2):883–893. doi:10.1172/JCI116663 8349823
  • Krishna SM , Moxon JV , Jose RJ , et al. Anionic nanoliposomes reduced atherosclerosis progression in Low Density Lipoprotein Receptor (LDLR) deficient mice fed a high fat diet. J Cell Physiol . 2018;233(10):6951–6964. doi:10.1002/jcp.26610 29741759
  • Mehta JL , Sanada N , Hu CP , et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ Res . 2007;100(11):1634–1642. doi:10.1161/CIRCRESAHA.107.149724 17478727
  • Brown MS , Herz J , Goldstein JL . LDL-receptor structure. Calcium cages acid baths and recycling receptors. Nature . 1997;388(6643):629–630.9262394
  • Ota T , Suzuki Y , Nishikawa T , et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet . 2004;36(1):40–45. doi:10.1038/ng1285 14702039
  • Usifo E , Leigh SE , Whittall RA , et al. Low-density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment. Ann Hum Genet . 2012;76(5):387–401. doi:10.1111/j.1469-1809.2012.00724.x 22881376
  • ArulJothi KN , Suruthi Abirami B , Devi A . Genetic spectrum of low density lipoprotein receptor gene variations in South Indian population. Clin Chim Acta . 2018;478:28–36. doi:10.1016/j.cca.2017.12.024 29269200
  • Paththinige CS , Rajapakse J , Constantine GR , et al. Spectrum of low-density lipoprotein receptor (LDLR) mutations in a cohort of Sri Lankan patients with familial hypercholesterolemia - a preliminary report. Lipids Health Dis . 2018;17(1):100. doi:10.1186/s12944-018-0763-z 29720182
  • Hobbs HH , Brown MS , Goldstein JL . Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat . 1992;1(6):445–466. doi:10.1002/humu.1380010602 1301956
  • Etxebarria A , Benito-Vicente A , Stef M , Ostolaza H , Palacios L , Martin C . Activity-associated effect of LDL receptor missense variants located in the cysteine-rich repeats. Atherosclerosis . 2015;238(2):304–312. doi:10.1016/j.atherosclerosis.2014.12.026 25545329
  • Davis CG , Lehrman MA , Russell DW , et al. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell . 1986;45(1):15–24. doi:10.1016/0092-8674(86)90533-7 3955657
  • Benito-Vicente A , Siddiqi H , Uribe KB , et al. p. (Asp47Asn) and p. (Thr62Met): non deleterious LDL receptor missense variants functionally characterized in vitro. Sci Rep . 2018;8(1):16614. doi:10.1038/s41598-018-34715-x 30413722
  • Chora JR , Medeiros AM , Alves AC , Bourbon M . Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis. Genet Med . 2018;20(6):591–598. doi:10.1038/gim.2017.151 29261184
  • Besseling J , Kastelein JJ , Defesche JC , Hutten BA , Hovingh GK . Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA . 2015;313(10):1029–1036. doi:10.1001/jama.2015.1206 25756439
  • Besseling J , Defesche J , Kastelein JJ , Hutten BA , Hovingh GK . Abstract 13703: patients with familial hypercholesterolemia are protected against type II diabetes - a cross-sectional study in 63,000 individuals tested for the presence of LDL receptor mutations. Circulation . 2014;130(suppl_2):A13703–A13703.
  • Smith JR , Osborne TF , Goldstein JL , Brown MS . Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene. J Biol Chem . 1990;265(4):2306–2310.2298751
  • Horton JD , Shimomura I , Brown MS , Hammer RE , Goldstein JL , Shimano H . Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest . 1998;101(11):2331–2339. doi:10.1172/JCI2961 9616204
  • Hua X , Yokoyama C , Wu J , et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci U S A . 1993;90(24):11603–11607. doi:10.1073/pnas.90.24.11603 7903453
  • Van Rooyen DM , Farrell GC . SREBP-2: a link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J Gastroenterol Hepatol . 2011;26(5):789–792. doi:10.1111/j.1440-1746.2011.06704.x 21488942
  • Li H , Liu J . Identification of heterogeneous nuclear ribonucleoprotein K as a transactivator for human low density lipoprotein receptor gene transcription. J Biol Chem . 2010;285(23):17789–17797. doi:10.1074/jbc.M109.082057 20371611
  • Sanchez HB , Yieh L , Osborne TF . Cooperation by sterol regulatory element-binding protein and Sp1 in sterol regulation of low density lipoprotein receptor gene. J Biol Chem . 1995;270(3):1161–1169. doi:10.1074/jbc.270.3.1161 7836375
  • Ochiai A , Miyata S , Iwase M , Shimizu M , Inoue J , Sato R . Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes. Sci Rep . 2016;6:24940. doi:10.1038/srep24940 27109240
  • Li C , Briggs MR , Ahlborn TE , Kraemer FB , Liu J . Requirement of Sp1 and estrogen receptor alpha interaction in 17beta-estradiol-mediated transcriptional activation of the low density lipoprotein receptor gene expression. Endocrinology . 2001;142(4):1546–1553. doi:10.1210/endo.142.4.8096 11250935
  • Bruning JC , Lingohr P , Gillette J , et al. Estrogen receptor-alpha and Sp1 interact in the induction of the low density lipoprotein-receptor. J Steroid Biochem Mol Biol . 2003;86(2):113–121.14568562
  • Huang W , Mishra V , Batra S , Dillon I , Mehta KD . Phorbol ester promotes histone H3-Ser10 phosphorylation at the LDL receptor promoter in a protein kinase C-dependent manner. J Lipid Res . 2004;45(8):1519–1527. doi:10.1194/jlr.M400088-JLR200 15145978
  • Hassinen A , Pujol FM , Kokkonen N , et al. Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J Biol Chem . 2011;286(44):38329–38340. doi:10.1074/jbc.M111.277681 21911486
  • Wang S , Mao Y , Narimatsu Y , et al. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. J Biol Chem . 2018;293(19):7408–7422. doi:10.1074/jbc.M117.817981 29559555
  • Pedersen NB , Wang S , Narimatsu Y , et al. Low density lipoprotein receptor class A repeats are O-glycosylated in linker regions. J Biol Chem . 2014;289(25):17312–17324. doi:10.1074/jbc.M113.545053 24798328
  • Zelcer N , Hong C , Boyadjian R , Tontonoz P . LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science . 2009;325(5936):100–104. doi:10.1126/science.1168974 19520913
  • Sorrentino V , Zelcer N . Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor. Curr Opin Lipidol . 2012;23(3):213–219. doi:10.1097/MOL.0b013e3283532947 22510808
  • Scotti E , Hong C , Yoshinaga Y , et al. Targeted disruption of the idol gene alters cellular regulation of the low-density lipoprotein receptor by sterols and liver x receptor agonists. Mol Cell Biol . 2011;31(9):1885–1893. doi:10.1128/MCB.01469-10 21343340
  • Sorrentino V , Scheer L , Santos A , Reits E , Bleijlevens B , Zelcer N . Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible Degrader of the LDLR (IDOL). J Biol Chem . 2011;286(34):30190–30199. doi:10.1074/jbc.M111.249557 21734303
  • Sorrentino V , Nelson JK , Maspero E , et al. The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation. J Lipid Res . 2013;54(8):2174–2184. doi:10.1194/jlr.M037713 23733886
  • van Loon NM , Ottenhoff R , Kooijman S , et al. Inactivation of the E3 ubiquitin ligase IDOL attenuates diet-induced obesity and metabolic dysfunction in mice. Arterioscler Thromb Vasc Biol . 2018;38(8):1785–1795. doi:10.1161/ATVBAHA.118.311168 29903737
  • Sorrentino V , Fouchier SW , Motazacker MM , et al. Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein. Eur Heart J . 2013;34(17):1292–1297. doi:10.1093/eurheartj/ehs472 23324548
  • Steinberg D , Witztum JL . Inhibition of PCSK9: a powerful weapon for achieving ideal LDL cholesterol levels. Proc Natl Acad Sci U S A . 2009;106(24):9546–9547. doi:10.1073/pnas.0904560106 19506257
  • Della Badia LA , Elshourbagy NA , Mousa SA . Targeting PCSK9 as a promising new mechanism for lowering low-density lipoprotein cholesterol. Pharmacol Ther . 2016;164:183–194. doi:10.1016/j.pharmthera.2016.04.011 27133571
  • Deng SJ , Alabi A , Gu HM , Adijiang A , Qin S , Zhang DW . Identification of amino acid residues in the ligand binding repeats of LDL receptor important for PCSK9 binding. J Lipid Res . 2019;60(3):516–527. doi:10.1194/jlr.M089193 30617148
  • Sharma K , D’Souza RC , Tyanova S , et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep . 2014;8(5):1583–1594. doi:10.1016/j.celrep.2014.07.036 25159151
  • Palacios-Moreno J , Foltz L , Guo A , et al. Neuroblastoma tyrosine kinase signaling networks involve FYN and LYN in endosomes and lipid rafts. PLoS Comput Biol . 2015;11(4):e1004130. doi:10.1371/journal.pcbi.1004130 25884760
  • Sattar N , Preiss D , Robinson JG , et al. Lipid-lowering efficacy of the PCSK9 inhibitor evolocumab (AMG 145) in patients with type 2 diabetes: a meta-analysis of individual patient data. Lancet Diabetes Endocrinol . 2016;4(5):403–410. doi:10.1016/S2213-8587(16)00003-6 26868195
  • Reyes-Soffer G , Pavlyha M , Ngai C , et al. Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation . 2017;135(4):352–362. doi:10.1161/CIRCULATIONAHA.116.025253 27986651
  • Farnier M , Jones P , Severance R , et al. Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: the ODYSSEY OPTIONS II randomized trial. Atherosclerosis . 2016;244:138–146. doi:10.1016/j.atherosclerosis.2015.11.010 26638010
  • Colhoun HM , Ginsberg HN , Robinson JG , et al. No effect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY Phase 3 studies. Eur Heart J . 2016;37(39):2981–2989. doi:10.1093/eurheartj/ehw292 27460890
  • Tavori H , Giunzioni I , Fazio S . PCSK9 inhibition to reduce cardiovascular disease risk: recent findings from the biology of PCSK9. Curr Opin Endocrinol Diabetes Obes . 2015;22(2):126–132. doi:10.1097/MED.0000000000000137 25692926
  • Fitzgerald G , Kiernan T . PCSK9 inhibitors and LDL reduction: pharmacology, clinical implications, and future perspectives. Expert Rev Cardiovasc Ther . 2018;16(8):567–578. doi:10.1080/14779072.2018.1497975 29979908
  • Jeong HJ , Lee HS , Kim KS , Kim YK , Yoon D , Park SW . Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res . 2008;49(2):399–409. doi:10.1194/jlr.M700443-JLR200 17921436
  • Bjune K , Wierod L , Naderi S . Triciribine increases LDLR expression and LDL uptake through stabilization of LDLR mRNA. Sci Rep . 2018;8(1):16174. doi:10.1038/s41598-018-34237-6 30385871
  • Cao A , Wu M , Li H , Liu J . Janus kinase activation by cytokine oncostatin M decreases PCSK9 expression in liver cells. J Lipid Res . 2011;52(3):518–530. doi:10.1194/jlr.M010603 21196532
  • Li C , Kraemer FB , Ahlborn TE , Liu J . Induction of low density lipoprotein receptor (LDLR) transcription by oncostatin M is mediated by the extracellular signal-regulated kinase signaling pathway and the repeat 3 element of the LDLR promoter. J Biol Chem . 1999;274(10):6747–6753. doi:10.1074/jbc.274.10.6747 10037774
  • Liu J , Streiff R , Zhang YL , Vestal RE , Spence MJ , Briggs MR . Novel mechanism of transcriptional activation of hepatic LDL receptor by oncostatin M. J Lipid Res . 1997;38(10):2035–2048.9374126
  • Zhang F , Ahlborn TE , Li C , Kraemer FB , Liu J . Identification of Egr1 as the oncostatin M-induced transcription activator that binds to sterol-independent regulatory element of human LDL receptor promoter. J Lipid Res . 2002;43(9):1477–1485. doi:10.1194/jlr.m200126-jlr200 12235180
  • Heinrich PC , Behrmann I , Muller-Newen G , Schaper F , Graeve L . Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J . 1998;334(Pt 2):297–314. doi:10.1042/bj3340297 9716487
  • Zhang F , Lin M , Abidi P , Thiel G , Liu J . Specific interaction of Egr1 and c/EBPbeta leads to the transcriptional activation of the human low density lipoprotein receptor gene. J Biol Chem . 2003;278(45):44246–44254. doi:10.1074/jbc.M305564200 12947119
  • Kapoor GS , Golden C , Atkins B , Mehta KD . pp90RSK- and protein kinase C-dependent pathway regulates p42/44MAPK-induced LDL receptor transcription in HepG2 cells. J Lipid Res . 2003;44(3):584–593. doi:10.1194/jlr.M200302-JLR200 12562867
  • Expert Panel on Integrated Guidelines for Cardiovascular H, Risk Reduction in C, Adolescents, National Heart L, Blood I. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics . 2011;128 Suppl 5:S213–S256. doi:10.1542/peds.2009-2107C 22084329
  • Cannon CP , Blazing MA , Giugliano RP , et al; Investigators I-I. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med . 2015;372(25):2387–2397. doi:10.1056/NEJMoa1410489 26039521
  • Insull W Jr. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J . 2006;99(3):257–273. doi:10.1097/01.smj.0000208120.73327.db 16553100
  • Gu HM , Zhang DW . Hypercholesterolemia, low density lipoprotein receptor and proprotein convertase subtilisin/kexin-type 9. J Biomed Res . 2015;29(5):356–361. doi:10.7555/JBR.29.20150067 26445568
  • Bellosta S , Paoletti R , Corsini A . Safety of statins: focus on clinical pharmacokinetics and drug interactions. Circulation . 2004;109(23 Suppl 1):III50–III57. doi:10.1161/01.CIR.0000131519.15067.1f 15198967