268
Views
36
CrossRef citations to date
0
Altmetric
Review

Thioredoxin-Interacting Protein as a Novel Potential Therapeutic Target in Diabetes Mellitus and Its Underlying Complications

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 43-51 | Published online: 07 Jan 2020

References

  • Okur ME, Karantas ID, Siafaka PI. Diabetes mellitus: a review on pathophysiology, current status of oral pathophysiology, current status of oral medications and future perspectives. ACTA Pharm Sci. 2017;55(1):61–82.
  • Abebe N, Kebede T, Addise D. Diabetes in Ethiopia 2000-2016 prevalence and related acute and chronic complications; a systematic review. Afr J Diabetes Med. 2017;25(2):7–12.
  • Rangel ÉB, Rodrigues CO, De Sá JR. Micro and macrovascular complications in diabetes mellitus: preclinical and clinical studies. J Diabetes Res. 2019;1–5. doi:10.1155/2019/2161085
  • Ganie MA, Kotwal S. Recent advances in management of diabetes mellitus. J Int Med Sci Acad. 2012;25(3):171–175.
  • Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–188. doi:10.1152/physrev.00045.2011
  • International Diabetes Federation (IDF). Diabetes Atlas. 8th ed. Brussels, Belgium; 2017. Available from: http://www.diabetesatlas.org. Accessed August 23, 2019.
  • International Diabetes Federation (IDF). Diabetes Atlas. 7th ed. Brussels, Belgium; 2015. Available from: http://www.diabetesatlas.org. Accessed July 15, 2019.
  • International Diabetes Federation (IDF). Diabetes Atlas. 6th ed. Brussels, Belgium; 2013. Available from: http://www.diabetesatlas.org. Accessed August 17, 2019.
  • Liu C, Hao Y, Yin F, Zhang Y, Liu J. Geniposide accelerates proteasome degradation of Txnip to inhibit insulin secretion in pancreatic β-cells. J Endocrinol Invest. 2017;40(5):505–512. doi:10.1007/s40618-016-0591-9
  • Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2017;93(1):137–188.
  • Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J. Thioredoxin/TXNIP: redoxisome, as a redox switch for the pathogenesis of diseases. Front Immunol. 2014;4:514. doi:10.3389/fimmu.2013.00514
  • Kampmann U, Madsen LR, Skajaa GO, Iversen DS, Moeller N, Ovesen P. Gestational diabetes: a clinical update. World J Diabetes. 2017. 6(8):1065–1075.
  • Deepa D, Kiran B, Gadwalkar SR. Macrovascular and microvascular complications in newly diagnosed type 2 diabetes mellitus. Indian J Clin Pract. 2014;25(7):644–648.
  • Chen J, Hui ST, Couto FM, et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 2008;22(10):3581–3594. doi:10.1096/fj.08-111690
  • Katsu-Jiménez Y, Vázquez-Calvo C, Maffezzini C, et al. Absence of TXNIP in humans leads to lactic acidosis and low serum methionine linked to deficient respiration on pyruvate. Diabetes. 2019;68(4):709–723. doi:10.2337/db18-0557
  • Hu J, Yu Y. The function of thioredoxin-binding protein-2 (TBP-2) in different diseases. Oxid Med Cell Longev. 2018;24(5):1–10.
  • Alhawiti N, Al Mahri S, Azhar Aziz M, Shafi Malik S, Mohammad S. TXNIP in metabolic regulation: physiological role and therapeutic outlook. Curr Drug Targets. 2017;18(9):1095–1103. doi:10.2174/1389450118666170130145514
  • Spindel ON, World C, Berk BC. Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxid Redox Signal. 2012;16(6):587–596. doi:10.1089/ars.2011.4137
  • Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 2017;26(10):501–518. doi:10.1089/ars.2016.6755
  • Tinkov AA, Bjørklund G, Skalny AV, et al. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker. Cell Mole Life Sci. 2018;75(9):1567–1586. doi:10.1007/s00018-018-2745-8
  • Chong CR, Chan WPA, Nguyen TH, et al. Thioredoxin-interacting protein: pathophysiology and emerging pharmacotherapeutics in cardiovascular disease and diabetes. Cardiovasc Drugs Ther. 2014;28(4):347–360. doi:10.1007/s10557-014-6538-5
  • Shalev A. Minireview: thioredoxin-interacting protein: regulation and function in the pancreatic β-cell. Mole Endocrinol. 2014;28(8):1211–1220. doi:10.1210/me.2014-1095
  • Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med. 2013;19(9):1141. doi:10.1038/nm.3287
  • Hwang JSH, Jeon YH. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat Commun. 2014;5:2958. doi:10.1038/ncomms3958
  • Mahmood DF, Hadri K, Simmet T, Rouis M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal. 2013;19:1266–1303. doi:10.1089/ars.2012.4757
  • Schulze PC, Takahashi T, He Z, King GL, Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxininteracting protein. J Biol Chem. 2004;279:30369–30374. doi:10.1074/jbc.M400549200
  • Liu L, Liu Y, Qi B, Wu Q, Li Y, Wang Z. Nicorandil attenuates endothelial VCAM‑1 expression via thioredoxin production in diabetic rats induced by streptozotocin. Mol Med Rep. 2014;9(6):2227–2232. doi:10.3892/mmr.2014.2066
  • Dunn LL, Simpson PJ, Prosser HC, et al. A critical role for thioredoxin-interacting protein in diabetes-related impairment of angiogenesis. Diabetes. 2014;63(2):675–687. doi:10.2337/db13-0417
  • Li X, Kover KL, Heruth DP, et al. Thioredoxin-interacting protein promotes high-glucose-induced macrovascular endothelial dysfunction. Biochem Biophys Res Commun. 2017;493(1):291–297. doi:10.1016/j.bbrc.2017.09.028
  • Zeng J, Chen B. Epigenetic mechanisms in the pathogenesis of diabetic retinopathy. Ophthalmol. 2014;232(1):1–9. doi:10.1159/000357824
  • Perrone L, Devi T, Hosoya K, Terasaki T, Singh L. Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death Dis. 2010;1(8):1–11. doi:10.1038/cddis.2010.42
  • Singh LP, Devi TS, Yumnamcha T. The role of TXNIP in mitophagy dysregulation and inflammasome activation in diabetic retinopathy: a new perspective. JOJ ophthalmol. 2017;4(4):1–11. doi:10.19080/JOJO.2017.04.555643
  • Duan J, Du C, Shi Y, Liu D, Ma J. Thioredoxin-interacting protein deficiency ameliorates diabetic retinal angiogenesis. Int J Biochem Cell Biol. 2018;94:61–70. doi:10.1016/j.biocel.2017.11.013
  • Coucha M, Elshaer SL, Eldahshan WS, Mysona BA, El-Remessy AB. Molecular mechanisms of diabetic retinopathy: potential therapeutic targets. Middle East Afr J Ophthalmol. 2015;22(2):135. doi:10.4103/0974-9233.154386
  • Zhang WLH, AlShabrawey M, Caldwell RW, Caldwell RB. Inflammation and diabetic retinal microvascular complications. J Cardiovasc Dis Res. 2011;2:96–103. doi:10.4103/0975-3583.83035
  • Chen W, Zhao M, Zhao S, et al. Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline. Inflam Res. 2017;66(2):157–166. doi:10.1007/s00011-016-1002-6
  • Tan SM, Zhang Y, Cox AJ, Kelly DJ, Qi W. Tranilast attenuates the up-regulation of thioredoxin-interacting protein and oxidative stress in an experimental model of diabetic nephropathy. Nephrol Dial Transpl. 2010;26(1):100–110. doi:10.1093/ndt/gfq355
  • Zhang G, Zhou L, Xu Z, Pronyuk K, Chen X, Wang H. Diabetic nephropathy: causative and protective factors. Glob J Med Res. 2015;15(2):17–26.
  • Shah A, Xia L, Masson EA, et al. Thioredoxin-interacting protein deficiency protects against diabetic nephropathy. Clin J Am Soc Nephrol. 2015;26(12):2963–2977. doi:10.1681/ASN.2014050528
  • Xu LW, Jimin L, Yingying C, Yaoming X. TXNIP mediated the oxidative stress response in glomerular mesangial cells partially through the AMPK pathway. Biomed Pharmacother. 2018;107:785–792. doi:10.1016/j.biopha.2018.08.067
  • Cha-Molstad SG, Chen J, Shalev A. Glucose-stimulated expression of Txnip is mediated by carbohydrate response element-binding protein, p300, and histone H4 acetylation in pancreatic beta cells. J Biol Chem. 2009;284(25):16898–16905. doi:10.1074/jbc.M109.010504
  • Fang SJY, Zheng H. High glucose condition upregulated TXNIP expression level in rat mesangial cells through ROS/MEK/MAPK pathway. Mol Cell Biol. 2011;347(2):175–182.
  • Yu FX, He H, Hagen T, Luo Y. Thioredoxin-interacting protein (TXNIP) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem. 2010;285(33):25822–25830. doi:10.1074/jbc.M110.108290
  • Cherney TK. Beta-cell preservation in patients with type 1 diabetes. Nat Med. 2018;24:1089–1096. doi:10.1038/s41591-018-0144-1
  • Ovalle F, Grimes T, Xu G, et al. Verapamil and beta-cell function in adults with recent-onset type 1 diabetes. Nat Med. 2018;24(8):1108. doi:10.1038/s41591-018-0089-4
  • Xu G, Chen J, Jing G, Shalev A. Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes. 2012;61(4):848–856. doi:10.2337/db11-0955
  • Yin T, Kuo SC, Chang YY, Chen YT, Wang WK. Verapamil use is associated with reduction of newly diagnosed diabetes mellitus. J Clin Endocrinol Metab. 2017;102(7):2604–2610. doi:10.1210/jc.2016-3778
  • ClinicalTrials.gov. Verapamil for beta-cell survival therapy in type 1 diabetes. Available from: https://clinicaltrials.gov/ct2/show/results/NCT02372253. Accessed November 17, 2019.
  • Li T, Lin G, Zhong L, et al. W2476 ameliorates β-cell dysfunction and exerts therapeutic effects in mouse models of diabetes via modulation of the thioredoxin-interacting protein signaling pathway. Acta Pharmacol Sin. 2017;38(7):1024. doi:10.1038/aps.2017.15
  • Kim DH, Kim SM, Lee B, et al. Effect of betaine on hepatic insulin resistance through FOXO1-induced NLRP3 inflammasome. J Nutr Biochem. 2017;45:104–114. doi:10.1016/j.jnutbio.2017.04.014
  • Li M, Zhang Y, Cao Y, et al. Icariin ameliorates palmitate-induced insulin resistance through reducing thioredoxin-interacting protein (TXNIP) and suppressing ER stress in C2C12 myotubes. Front Pharmacol. 2018;9:1–12. doi:10.3389/fphar.2018.01180
  • Yeda X, Shaoqing L, Yayi H, et al. Dexmedetomidine protects against renal ischemia and reperfusion injury by inhibiting the P38-MAPK/TXNIP signaling activation in streptozotocin-induced diabetic rats. Acta Cir Bras. 2017;32(6):429–439. doi:10.1590/s0102-865020170060000003
  • Xu L, Lin X, Guan M, Zeng Y, Liu Y. Verapamil attenuated pre-diabetic neuropathy in high-fat diet-fed mice through inhibiting TXNIP-mediated apoptosis and inflammation. Oxid Med Cell Longev. 2019;2019:1–14.
  • Li J, Wang P, Chen Z, Yu S, Xu H. Fenofibrate ameliorates oxidative stress-induced retinal microvascular dysfunction in diabetic rats. Curr Eye Res. 2018;43(11):1395–1403. doi:10.1080/02713683.2018.1501072