186
Views
0
CrossRef citations to date
0
Altmetric
Original Research

BCc1 Nanomedicine Therapeutic Effects in Streptozotocin and High-Fat Diet Induced Diabetic Kidney Disease

, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 1179-1188 | Published online: 17 Apr 2020

References

  • Fraser SD, Roderick PJ, Aitken G, et al. Chronic kidney disease, albuminuria and socioeconomic status in the Health Surveys for England 2009 and 2010. J Public Health (Bangkok). 2014;36(4):577–586. doi:10.1093/pubmed/fdt117
  • Fraser SD, Roderick PJ, May CR, et al. The burden of comorbidity in people with chronic kidney disease stage 3: a cohort study. BMC Nephrol. 2015;16(1):193. doi:10.1186/s12882-015-0189-z
  • Tonelli M, Wiebe N, Guthrie B, et al. Comorbidity as a driver of adverse outcomes in people with chronic kidney disease. Kidney Int. 2015;88(4):859–866. doi:10.1038/ki.2015.228
  • Pyram R, Kansara A, Banerji MA, Loney-Hutchinson L. Chronic kidney disease and diabetes. Maturitas. 2012;71(2):94–103. doi:10.1016/j.maturitas.2011.11.009
  • Kontoghiorghe CN, Kontoghiorghes GJ. New developments and controversies in iron metabolism and iron chelation therapy. World J Methodol. 2016;6(1):1–19. doi:10.5662/wjm.v6.i1.1
  • Panwar B, Gutierrez OM. Disorders of iron metabolism and anemia in chronic kidney disease. Semin Nephrol. 2016;36(4):252–261. doi:10.1016/j.semnephrol.2016.05.002
  • Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodial Int. 2017;21(Suppl 1):S6–S20. doi:10.1111/hdi.12542
  • Osterholm EA, Georgieff MK. Chronic inflammation and iron metabolism. J Pediatr. 2015;166(6):1351–1357 e1351. doi:10.1016/j.jpeds.2015.01.017
  • Oberley TD. Oxidative damage and cancer. Am J Pathol. 2002;160(2):403–408. doi:10.1016/S0002-9440(10)64857-2
  • Wawer AA, Jennings A, Fairweather-Tait SJ. Iron status in the elderly: a review of recent evidence. Mech Ageing Dev. 2018;175:55–73. doi:10.1016/j.mad.2018.07.003
  • Whaley-Connell A, McCullough PA, Sowers JR. The role of oxidative stress in the metabolic syndrome. Rev Cardiovasc Med. 2011;12(1):21–29. doi:10.3909/ricm0555
  • Miranda MA, Lawson HA. Ironing out the details: untangling dietary iron and genetic background in diabetes. Nutrients. 2018;10(10):1437. doi:10.3390/nu10101437
  • Lehmann C, Islam S, Jarosch S, et al. The utility of iron chelators in the management of inflammatory disorders. Mediators Inflamm. 2015;2015:516740. doi:10.1155/2015/516740
  • Shah SV, Rajapurkar MM. The role of labile iron in kidney disease and treatment with chelation. Hemoglobin. 2009;33(5):378–385. doi:10.3109/03630260903212233
  • Marks ES, Bonnemaison ML, Brusnahan SK, et al. Renal iron accumulation occurs in lupus nephritis and iron chelation delays the onset of albuminuria. Sci Rep. 2017;7(1):12821. doi:10.1038/s41598-017-13029-4
  • Morita T, Nakano D, Kitada K, et al. Chelation of dietary iron prevents iron accumulation and macrophage infiltration in the type I diabetic kidney. Eur J Pharmacol. 2015;756:85–91. doi:10.1016/j.ejphar.2015.03.053
  • Ikeda Y, Ozono I, Tajima S, et al. Iron chelation by deferoxamine prevents renal interstitial fibrosis in mice with unilateral ureteral obstruction. PLoS One. 2014;9(2):e89355. doi:10.1371/journal.pone.0089355
  • Kakhlon O, Breuer W, Munnich A, Cabantchik ZI. Iron redistribution as a therapeutic strategy for treating diseases of localized iron accumulation. Can J Physiol Pharmacol. 2010;88(3):187–196. doi:10.1139/Y09-128
  • Kalanaky S, Hafizi M, Fakharzadeh S, et al. BCc1, the novel antineoplastic nanocomplex, showed potent anticancer effects in vitro and in vivo. Drug Des Devel Ther. 2016;10:59–70. doi:10.2147/DDDT.S89694
  • Hafizi M, Kalanaky S, Moaiery H, et al. A randomized, double-blind, placebo-controlled investigation of BCc1 nanomedicine effect on survival and quality of life in metastatic and non-metastatic gastric cancer patients. J Nanobiotechnology. 2019;17(1):52. doi:10.1186/s12951-019-0484-0
  • Fakharzadeh S, Kalanaky S, Hafizi M, Nazaran MH, Zardooz H. DIBc, a nanochelating-based nano metal-organic framework, shows anti-diabetic effects in high-fat diet and streptozotocin-induced diabetic rats. Int J Nanomedicine. 2019;14:2145–2156. doi:10.2147/IJN.S196050
  • Antunes LC, Elkfury JL, Jornada MN, Foletto KC, Bertoluci MC. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats. Arch Endocrinol Metabol. 2016;60(2):138–142. doi:10.1590/2359-3997000000169
  • Al-Trad B, Alkhateeb H, Alsmadi W, Al-Zoubi M. Eugenol ameliorates insulin resistance, oxidative stress and inflammation in high fat-diet/streptozotocin-induced diabetic rat. Life Sci. 2019;216:183–188. doi:10.1016/j.lfs.2018.11.034
  • Krata N, Zagozdzon R, Foroncewicz B, Mucha K. Oxidative stress in kidney diseases: the cause or the consequence? Arch Immunol Ther Exp (Warsz). 2018;66(3):211–220. doi:10.1007/s00005-017-0496-0
  • Gyuraszova M, Gurecka R, Babickova J, Tothova L. Oxidative stress in the pathophysiology of kidney disease: implications for noninvasive monitoring and identification of biomarkers. Oxid Med Cell Longev. 2020;2020:5478708. doi:10.1155/2020/5478708
  • Fakharzadeh S, Sahraian MA, Hafizi M, et al. The therapeutic effects of MSc1 nanocomplex, synthesized by nanochelating technology, on experimental autoimmune encephalomyelitic C57/BL6 mice. Int J Nanomedicine. 2014;9:3841–3853. doi:10.2147/IJN.S64630
  • Dogukan A, Tuzcu M, Juturu V, et al. Effects of chromium histidinate on renal function, oxidative stress, and heat-shock proteins in fat-fed and streptozotocin-treated rats. J Ren Nutr. 2010;20(2):112–120. doi:10.1053/j.jrn.2009.04.009
  • Savage S, Estacio RO, Jeffers B, Schrier RW. Urinary albumin excretion as a predictor of diabetic retinopathy, neuropathy, and cardiovascular disease in NIDDM. Diabetes Care. 1996;19(11):1243–1248. doi:10.2337/diacare.19.11.1243
  • Uchida M, Sakaguchi Y, Miyamoto Y. A novel vitamin K1 2,3-epoxide reductase (VKOR) inhibitor, 3-acetyl-5-methyltetronic acid, reduces experimental glomerulonephritis. J Vet Med Sci. 2012;74(7):863–869. doi:10.1292/jvms.11-0530
  • Sasatomi Y, Kaneoka H, Abe Y, et al. Anemia and hypertension are risk factors for both renal prognosis and survival in patients with diabetes mellitus. Clin Exp Nephrol. 2009;13(5):473–479. doi:10.1007/s10157-009-0191-5
  • Haffner SM. Coronary heart disease in patients with diabetes. N Engl J Med. 2000;342(14):1040–1042. doi:10.1056/NEJM200004063421408
  • Renke M, Knap N, Tylicki L, et al. [Isoprostanes - important marker of the oxidative stress estimation in patients with chronic kidney disease]. Pol Merkur Lekarski. 2013;34(199):14–17. Polish.
  • Garrido P, Ribeiro S, Fernandes J, et al. Iron-hepcidin dysmetabolism, anemia and renal hypoxia, inflammation and fibrosis in the remnant kidney rat model. PLoS One. 2015;10(4):e0124048. doi:10.1371/journal.pone.0124048
  • Scholze A, Jankowski J, Pedraza-Chaverri J, Evenepoel P. Oxidative stress in chronic kidney disease. Oxid Med Cell Longev. 2016;2016:8375186. doi:10.1155/2016/8375186
  • Evstatiev R, Gasche C. Iron sensing and signalling. Gut. 2012;61(6):933–952. doi:10.1136/gut.2010.214312
  • Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc London B Biol Sci. 2003;358(1429):59–83; discussion 83–55. doi:10.1098/rstb.2002.1183
  • Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202(2):199–211. doi:10.1016/j.taap.2004.06.021
  • Imam MU, Zhang S, Ma J, Wang H, Wang F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients. 2017;9(7):671. doi:10.3390/nu9070671
  • Gonzalez N, Prieto I, Del Puerto-Nevado L, et al. 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget. 2017;8(11):18456–18485. doi:10.18632/oncotarget.14472
  • Bystrom LM, Rivella S. Cancer cells with irons in the fire. Free Radic Biol Med. 2015;79:337–342. doi:10.1016/j.freeradbiomed.2014.04.035
  • Shah SV, Fonseca VA. Iron and diabetes revisited. Diabetes Care. 2011;34(7):1676–1677. doi:10.2337/dc11-0700
  • Leggett BA, Brown NN, Bryant SJ, Duplock L, Powell LW, Halliday JW. Factors affecting the concentrations of ferritin in serum in a healthy Australian population. Clin Chem. 1990;36(7):1350–1355. doi:10.1093/clinchem/36.7.1350
  • Zhuang T, Han H, Yang Z. Iron, oxidative stress and gestational diabetes. Nutrients. 2014;6(9):3968–3980. doi:10.3390/nu6093968
  • Day SM, Duquaine D, Mundada LV, et al. Chronic iron administration increases vascular oxidative stress and accelerates arterial thrombosis. Circulation. 2003;107(20):2601–2606. doi:10.1161/01.CIR.0000066910.02844.D0
  • Lee DH, Folsom AR, Jacobs DR. Dietary iron intake and Type 2 diabetes incidence in postmenopausal women: the Iowa Women’s Health Study. Diabetologia. 2004;47(2):185–194. doi:10.1007/s00125-003-1307-1
  • Gozzelino R, Arosio P. Iron homeostasis in health and disease. Int J Mol Sci. 2016;17(1):130. doi:10.3390/ijms17010130
  • Hafizi M, Soleimani M, Noorian S, et al. Effects of BCc1 nanoparticle and its mixture with doxorubicin on survival of murine 4T1 tumor model. Onco Targets Ther. 2019;12:4691–4701. doi:10.2147/OTT.S200446
  • Mao CF, Zhang XR, Johnson A, He JL, Kong ZL. Modulation of diabetes mellitus-induced male rat reproductive dysfunction with micro-nanoencapsulated echinacea purpurea ethanol extract. Biomed Res Int. 2018;2018:4237354. doi:10.1155/2018/4237354
  • Hatcher HC, Singh RN, Torti FM, Torti SV. Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem. 2009;1(9):1643–1670. doi:10.4155/fmc.09.121
  • Hodaei H, Adibian M, Nikpayam O, Hedayati M, Sohrab G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: a randomized, double-blind clinical trial. Diabetol Metab Syndr. 2019;11(1):41. doi:10.1186/s13098-019-0437-7
  • Cooksey RC, Jones D, Gabrielsen S, et al. Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (ob/ob lep-/-) mouse. Am J Physiol Endocrinol Metab. 2010;298(6):E1236–1243. doi:10.1152/ajpendo.00022.2010
  • Zou C, Liu X, Liu R, et al. Effect of the oral iron chelator deferiprone in diabetic nephropathy rats. J Diabetes. 2017;9(4):332–340. doi:10.1111/1753-0407.12420
  • Zou C, Xie R, Bao Y, et al. Iron chelator alleviates tubulointerstitial fibrosis in diabetic nephropathy rats by inhibiting the expression of tenascinC and other correlation factors. Endocrine. 2013;44(3):666–674. doi:10.1007/s12020-013-9907-0
  • Cui X, Gong J, Han H, et al. Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimens. J Thorac Dis. 2018;10(5):3088–3097. doi:10.21037/jtd.2018.05.92
  • Fritz KS, Petersen DR. An overview of the chemistry and biology of reactive aldehydes. Free Radic Biol Med. 2013;59:85–91. doi:10.1016/j.freeradbiomed.2012.06.025
  • Gao W, Li X, Gao Z, Li H. Iron increases diabetes-induced kidney injury and oxidative stress in rats. Biol Trace Elem Res. 2014;160(3):368–375. doi:10.1007/s12011-014-0021-9
  • Thethi T, Rajapurkar M, Walker P, et al. Urinary catalytic iron in patients with type 2 diabetes without microalbuminuria–a substudy of the ACCORD Trial. Clin Chem. 2011;57(2):341–344. doi:10.1373/clinchem.2010.155887
  • Sturm B, Goldenberg H, Scheiber-Mojdehkar B. Transient increase of the labile iron pool in HepG2 cells by intravenous iron preparations. Eur J Biochem. 2003;270(18):3731–3738. doi:10.1046/j.1432-1033.2003.03759.x
  • Powell EE, Ali A, Clouston AD, et al. Steatosis is a cofactor in liver injury in hemochromatosis. Gastroenterology. 2005;129(6):1937–1943. doi:10.1053/j.gastro.2005.09.015
  • Bernardo B. [Induced sterilization and ethics]. Servir. 1992;40(2):60–61. Portuguese.
  • An P, Wang H, Wu Q, et al. Elevated serum transaminase activities were associated with increased serum levels of iron regulatory hormone hepcidin and hyperferritinemia risk. Sci Rep. 2015;5(1):13106. doi:10.1038/srep13106
  • Wang H, Li H, Jiang X, Shi W, Shen Z, Li M. Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats. Diabetes. 2014;63(5):1506–1518. doi:10.2337/db13-1195