565
Views
5
CrossRef citations to date
0
Altmetric
Review

Anti-Diabetic Effect of Telmisartan Through its Partial PPARγ-Agonistic Activity

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3627-3635 | Published online: 12 Oct 2020

References

  • Wienen W, Entzeroth M, van Meel JC, et al. A review on telmisartan: a novel, long‐acting angiotensin II‐receptor antagonist. Cardiovasc Drug Rev. 2000;18(2):127–154. doi:10.1111/j.1527-3466.2000.tb00039.x
  • Sharpe M, Jarvis B, Goa KL. Telmisartan. Drugs. 2001;61(10):1501–1529. doi:10.2165/00003495-200161100-00009
  • Galzerano D, Capogrosso C, Di Michele S, et al. New standards in hypertension and cardiovascular risk management: focus on telmisartan. Vasc Health Risk Manag. 2010;6:113–133. doi:10.2147/VHRM.S7857
  • Battershill AJ, Scott LJ. Telmisartan. Drugs. 2006;66(1):51–83. doi:10.2165/00003495-200666010-00004
  • Borém LMA, Neto JFR, Brandi IV, Lelis DF, Santos SHS. The role of the angiotensin II type I receptor blocker telmisartan in the treatment of non-alcoholic fatty liver disease: a brief review. Hypertens Res. 2018;41(6):394–405. doi:10.1038/s41440-018-0040-6
  • Haraguchi T, Iwasaki K, Takasaki K, et al. Telmisartan, a partial agonist of peroxisome proliferator-activated receptor γ, improves impairment of spatial memory and hippocampal apoptosis in rats treated with repeated cerebral ischemia. Brain Res. 2010;1353:125–132. doi:10.1016/j.brainres.2010.07.017
  • Maejima Y, Okada H, Haraguchi G, et al. Telmisartan, a unique ARB, improves left ventricular remodeling of infarcted heart by activating PPAR gamma. Lab Invest. 2011;91(6):932–944. doi:10.1038/labinvest.2011.45
  • Amano Y, Yamaguchi T, Ohno K, et al. Structural basis for telmisartan-mediated partial activation of PPAR gamma. Hypertens Res. 2012;35(7):715–719. doi:10.1038/hr.2012.17
  • Rakhshandehroo M, Knoch B, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. 2010;2010:612089. doi:10.1155/2010/612089
  • Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236. doi:10.4103/2231-4040.90879
  • Zieleniak A, Wójcik M, Woźniak LA. Structure and physiological functions of the human peroxisome proliferator-activated receptor γ. Arch Immunol Ther Exp. 2008;56(5):331. doi:10.1007/s00005-008-0037-y
  • Duan SZ, Usher MG, Mortensen RM. Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res. 2008;102(3):283–294. doi:10.1161/CIRCRESAHA.107.164384
  • Fogo AB. Potential for peroxisome proliferator-activated receptor-gamma agonists in progression: beyond metabolism. Curr Opin Nephrol Hypertens. 2008;17(3):282–285. doi:10.1097/MNH.0b013e3282f9b1c0
  • Wang G, Wei J, Guan Y, Jin N, Mao J, Wang X. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces clinical inflammatory responses in type 2 diabetes with coronary artery disease after coronary angioplasty. Metabolism. 2005;54(5):590–597. doi:10.1016/j.metabol.2004.11.017
  • Yu J, Jin N, Wang G, Zhang F, Mao J, Wang X. Peroxisome proliferator-activated receptor gamma agonist improves arterial stiffness in patients with type 2 diabetes mellitus and coronary artery disease. Metabolism. 2007;56(10):1396–1401. doi:10.1016/j.metabol.2007.05.011
  • Psaty BM, Furberg CD. Rosiglitazone and cardiovascular risk. Mass Med Soc. 2007.
  • Palee S, Weerateerangkul P, Chinda K, Chattipakorn SC, Chattipakorn N. Mechanisms responsible for beneficial and adverse effects of rosiglitazone in a rat model of acute cardiac ischaemia-reperfusion. Exp Physiol. 2013;98(5):1028–1037. doi:10.1113/expphysiol.2012.070433
  • Liberato MV, Nascimento AS, Ayers SD, et al. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS One. 2012;7(5):e36297–e. doi:10.1371/journal.pone.0036297
  • Wang L, Waltenberger B, Pferschy-Wenzig E-M, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol. 2014;92(1):73–89. doi:10.1016/j.bcp.2014.07.018
  • Julie NL, Julie IM, Kende AI, Wilson GL. Mitochondrial dysfunction and delayed hepatotoxicity: another lesson from troglitazone. Diabetologia. 2008;51(11):2108–2116.
  • Yokoi T. Troglitazone. In: Uetrecht J, editor. Adverse Drug Reactions. Berlin: Springer; 2010:419–435.
  • Bhalla K, Hwang BJ, Choi JH, et al. N-Acetylfarnesylcysteine is a novel class of peroxisome proliferator-activated receptor γ ligand with partial and full agonist activity in vitro and in vivo. J Biol Chem. 2011;286(48):41626–41635. doi:10.1074/jbc.M111.257915
  • Dhawan M, Agrawal R, Ravi J, et al. Rosiglitazone-induced granulomatous hepatitis. J Clin Gastroenterol. 2002;34(5):582–584. doi:10.1097/00004836-200205000-00021
  • Bonkovsky HL, Azar R, Bird S, Szabo G, Banner B. Severe cholestatic hepatitis caused by thiazolidinediones: risks associated with substituting rosiglitazone for troglitazone. Dig Dis Sci. 2002;47(7):1632–1637. doi:10.1023/A:1015895925374
  • Wallach JD, Wang K, Zhang AD, et al. Updating insights into rosiglitazone and cardiovascular risk through shared data: individual patient and summary level meta-analyses. BMJ. 2020;368:l7078. doi:10.1136/bmj.l7078
  • Rodriguez BSQ, Correa R. Rosiglitazone. StatPearls [Internet]. StatPearls Publishing; 2019.
  • Chinnam P, Mohsin M, Shafee LM. Evaluation of acute toxicity of pioglitazone in mice. Toxicol Int. 2012;19(3):250–254. doi:10.4103/0971-6580.103660
  • Shah P, Mudaliar S. Pioglitazone: side effect and safety profile. Expert Opin Drug Saf. 2010;9(2):347–354. doi:10.1517/14740331003623218
  • Zou C, Hu H. Use of pioglitazone in the treatment of diabetes: effect on cardiovascular risk. Vasc Health Risk Manag. 2013;9:429.
  • Belcher G, Matthews D. Safety and tolerability of pioglitazone. Exp Clin Endocrinol Diabetes. 2000;108(Sup.2):267–273. doi:10.1055/s-2000-8529
  • Nagasaka S, Abe T, Kawakami A, et al. Pioglitazone-induced hepatic injury in a patient previously receiving troglitazone with success. Diabet Med. 2002;19(4):347–348. doi:10.1046/j.1464-5491.2002.00712_4.x
  • Elshama SS, El-Kenawy AE-M, Osman H-EH. Toxicological evaluation of subchronic use of pioglitazone in mice. Iran J Basic Med Sci. 2016;19(7):712–719.
  • Guasch L, Sala E, Castell-Auví A, et al. Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PLoS One. 2012;7(11):e50816. doi:10.1371/journal.pone.0050816
  • Chang CH, McNamara LA, Wu MS, et al. A novel selective peroxisome proliferator-activator receptor-γ modulator—SPPARγM5 improves insulin sensitivity with diminished adverse cardiovascular effects. Eur J Pharmacol. 2008;584(1):192–201. doi:10.1016/j.ejphar.2007.12.036
  • Agrawal R, Jain P, N Dikshit S. Balaglitazone: a second generation peroxisome proliferator-activated receptor (PPAR) gamma (γ) agonist. Mini Rev Med Chem. 2012;12(2):87–97. doi:10.2174/138955712798995048
  • Burgermeister E, Schnoebelen A, Flament A, et al. A novel partial agonist of peroxisome proliferator-activated receptor-γ (PPARγ) Recruits PPARγ-Coactivator-1α, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Mol Endocrinol. 2006;20(4):809–830. doi:10.1210/me.2005-0171
  • Henriksen K, Byrjalsen I, Qvist P, et al. Efficacy and safety of the PPARgamma partial agonist balaglitazone compared with pioglitazone and placebo: a Phase III, randomized, parallel-group study in patients with type 2 diabetes on stable insulin therapy. Diabetes Metab Res Rev. 2011;27(4):392–401. doi:10.1002/dmrr.1187
  • Kim MK, Chae YN, Kim HS, et al. PAR-1622 is a selective peroxisome proliferator-activated receptor γ partial activator with preserved antidiabetic efficacy and broader safety profile for fluid retention. Arch Pharm Res. 2009;32(5):721–727. doi:10.1007/s12272-009-1511-8
  • Kim MK, Chae YN, Choi SH, et al. PAM-1616, a selective peroxisome proliferator-activated receptor γ modulator with preserved anti-diabetic efficacy and reduced adverse effects. Eur J Pharmacol. 2011;650(2–3):673–681. doi:10.1016/j.ejphar.2010.10.044
  • Kim KR, Lee JH, Kim SJ, et al. KR-62980: a novel peroxisome proliferator-activated receptor gamma agonist with weak adipogenic effects. Biochem Pharmacol. 2006;72(4):446–454. doi:10.1016/j.bcp.2006.05.005
  • Jung H, Lee MS, Jang EJ, et al. Augmentation of PPARgamma-TAZ interaction contributes to the anti-adipogenic activity of KR62980. Biochem Pharmacol. 2009;78(10):1323–1329. doi:10.1016/j.bcp.2009.07.001
  • Ming Y, Hu X, Song Y, et al. CMHX008, a novel peroxisome proliferator-activated receptor γ partial agonist, enhances insulin sensitivity in vitro and in vivo. PLoS One. 2014;9(7):e102102–e. doi:10.1371/journal.pone.0102102
  • Hou Y, Cao X, Hu X, et al. CMHX008, a PPARγ partial agonist, enhances insulin sensitivity with minor influences on bone loss. Genes Dis. 2018;5(3):290–299. doi:10.1016/j.gendis.2018.05.004
  • Amato AA, Rajagopalan S, Lin JZ, et al. GQ-16, a novel peroxisome proliferator-activated receptor γ (PPARγ) ligand, promotes insulin sensitization without weight gain. J Biol Chem. 2012;287(33):28169–28179. doi:10.1074/jbc.M111.332106
  • Xie X, Zhou X, Chen W, et al. L312, a novel PPARγ ligand with potent anti-diabetic activity by selective regulation. BBA - Gen Subjects. 2015;1850(1):62–72. doi:10.1016/j.bbagen.2014.09.027
  • Chigurupati S, Dhanaraj SA, Balakumar P. A step ahead of PPARγ full agonists to PPARγ partial agonists: therapeutic perspectives in the management of diabetic insulin resistance. Eur J Pharmacol. 2015;755:50–57. doi:10.1016/j.ejphar.2015.02.043
  • Balakumar P, Kathuria S. Submaximal PPARγ activation and endothelial dysfunction: new perspectives for the management of cardiovascular disorders. Br J Pharmacol. 2012;166(7):1981–1992.
  • Khan NM, Ahmad A, Tiwari K, A Kamal M, Mushtaq G, M Ashraf G. Current challenges to overcome in the management of type 2 diabetes mellitus and associated neurological disorders. CNS Neurol Disord Drug Targets. 2014;13(8):1440–1457.
  • Opie L. Sodium glucose co-transporter 2 (SGLT2) inhibitors: new among antidiabetic drugs. Cardiovasc Drugs Ther. 2014;28(4):331–334. doi:10.1007/s10557-014-6522-0
  • Opie LH, Yellon DM, Gersh BJ. Controversies in the cardiovascular management of type 2 diabetes. Heart. 2011;97(1):6–14. doi:10.1136/hrt.2010.214031
  • Shurrab NT, Arafa E-SA. Metformin: A review of its therapeutic efficacy and adverse effects. Obes Med. 2020;17:100186. doi:10.1016/j.obmed.2020.100186
  • Alam F, Islam MA, Kamal MA, Gan SH. Updates on managing type 2 diabetes mellitus with natural products: towards antidiabetic drug development. Curr Med Chem. 2018;25(39):5395–5431. doi:10.2174/0929867323666160813222436
  • Bonora E. Antidiabetic medications in overweight/obese patients with type 2 diabetes: drawbacks of current drugs and potential advantages of incretin‐based treatment on body weight. Int J Clin Pract. 2007;61:19–28. doi:10.1111/j.1742-1241.2007.01441.x
  • Chakraborti CK. Exenatide: a new promising antidiabetic agent. Indian J Pharm Sci. 2010;72(1):1–11. doi:10.4103/0250-474X.62228
  • Wang J, Pang T, Hafko R, Benicky J, Sanchez-Lemus E, Saavedra JM. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT1 receptor blockade and PPARγ activation. Neuropharmacology. 2014;79:249–261. doi:10.1016/j.neuropharm.2013.11.022
  • Fang T, Di Y, Li G, et al. Effects of telmisartan on TNFalpha induced PPARgamma phosphorylation and insulin resistance in adipocytes. Biochem Biophys Res Commun. 2018;503(4):3044–3049. doi:10.1016/j.bbrc.2018.08.091
  • Fujimoto M, Masuzaki H, Tanaka T, et al. An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT4 protein expression in 3T3-L1 adipocytes. FEBS Lett. 2004;576(3):492–497. doi:10.1016/j.febslet.2004.09.027
  • Furukawa H, Mawatari K, Koyama K, et al. Telmisartan increases localization of glucose transporter 4 to the plasma membrane and increases glucose uptake via peroxisome proliferator-activated receptor gamma in 3T3-L1 adipocytes. Eur J Pharmacol. 2011;660(2–3):485–491. doi:10.1016/j.ejphar.2011.04.008
  • Zhao S, Chan LKY, Chen L, Cheng TW, Klein T, Leung PS. Combination of telmisartan and linagliptin preserves pancreatic islet cell function and morphology in db/db mice. Pancreas. 2016;45(4):584–592. doi:10.1097/MPA.0000000000000505
  • Goyal BR, Parmar K, Goyal RK, Mehta AA. Beneficial role of telmisartan on cardiovascular complications associated with STZ-induced type 2 diabetes in rats. Pharmacol Rep. 2011;63(4):956–966. doi:10.1016/S1734-1140(11)70611-9
  • Watanabe M, Inukai K, Sumita T, et al. Effects of telmisartan on insulin resistance in Japanese type 2 diabetic patients. Internal Med. 2010;49(17):1843–1847. doi:10.2169/internalmedicine.49.3189
  • Mori H, Okada Y, Arao T, Nishida K, Tanaka Y. Telmisartan at 80 mg/Day Increases High-Molecular-Weight Adiponectin Levels and Improves Insulin Resistance in Diabetic Patients. Adv Ther. 2012;29(7):635–644. doi:10.1007/s12325-012-0032-x
  • Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013;417:80–84. doi:10.1016/j.cca.2012.12.007
  • Khan A, Khan BT, Qayyum A. Comparative study of telmisartan with pioglitazone on insulin resistance in type 2 diabetic mice. Pak Armed Forces Med J. 2017;67(1):31–36.
  • Kurtz TW. New treatment strategies for patients with hypertension and insulin resistance. Am J Med. 2006;119(5 Suppl 1):011. doi:10.1016/j.amjmed.2006.01.011
  • Suksomboon N, Poolsup N, Prasit T. Systematic review of the effect of telmisartan on insulin sensitivity in hypertensive patients with insulin resistance or diabetes. J Clin Pharm Ther. 2012;37(3):319–327. doi:10.1111/j.1365-2710.2011.01295.x
  • Wago T, Yoshimoto T, Akaza I, et al. Improvement of endothelial function in patients with hypertension and type 2 diabetes after treatment with telmisartan. Hypertens Res. 2010;33(8):796–801. doi:10.1038/hr.2010.107
  • Chang W-T, Cheng J-T, Chen Z-C. Telmisartan improves cardiac fibrosis in diabetes through peroxisome proliferator activated receptor δ (PPARδ): from bedside to bench. Cardiovasc Diabetol. 2016;15(1):113. doi:10.1186/s12933-016-0430-5
  • Mikami D, Kimura H, Kamiyama K, et al. Telmisartan activates endogenous peroxisome proliferator-activated receptor-δ and may have anti-fibrotic effects in human mesangial cells. Hypertens Res. 2014;37(5):422–431. doi:10.1038/hr.2013.157
  • Tuck ML. Angiotensin-receptor blocking agents and the peroxisome proliferator-activated receptor-gamma system. Curr Hypertens Rep. 2005;7(4):240–243. doi:10.1007/s11906-005-0019-y
  • Malek V, Gaikwad AB. Telmisartan and thiorphan combination treatment attenuates fibrosis and apoptosis in preventing diabetic cardiomyopathy. Cardiovasc Res. 2019;115(2):373–384. doi:10.1093/cvr/cvy226
  • Kobayashi N, Ohno T, Yoshida K, et al. Cardioprotective mechanism of telmisartan via PPAR-gamma-eNOS pathway in dahl salt-sensitive hypertensive rats. Am J Hypertens. 2008;21(5):576–581. doi:10.1038/ajh.2008.27
  • Towfighi A, Ovbiagele B. Partial peroxisome proliferator-activated receptor agonist angiotensin receptor blockers. Cerebrovasc Dis. 2008;26(2):106–112. doi:10.1159/000139656
  • Vanitha M, Vijayal R. Effect of telmisartan on serum lipid profile in patients with hypertension and dyslipidemia. Int J Med Res Health Sci. 2013;2(4):745–749. doi:10.5958/j.2319-5886.2.4.119
  • Xu C, Fang D, Chen X, et al. Effect of telmisartan on the therapeutic efficacy of pitavastatin in high-fat diet induced dyslipidemic guinea pigs. Eur J Pharmacol. 2015;762:364–371. doi:10.1016/j.ejphar.2015.06.005
  • Jayapriya B, Thamilarasi S, Shanthi M, Jafrin AL. Effect of telmisartan on blood pressure and lipid profile in hypertensive patients with dyslipidemia. Int J Pharm Life Sci. 2013;4(10).
  • Clemenz M, Frost N, Schupp M, et al. Liver-specific peroxisome proliferator–activated receptor α target gene regulation by the angiotensin type 1 receptor blocker telmisartan. Diabetes. 2008;57(5):1405–1413. doi:10.2337/db07-0839
  • Yin SN, Liu M, Jing DQ, Mu YM, Lu JM, Pan CY. Telmisartan increases lipoprotein lipase expression via peroxisome proliferator-activated receptor-alpha in HepG2 cells. Endocr Res. 2014;39(2):67–73. doi:10.3109/07435800.2013.828741
  • Makino H, Haneda M, Babazono T, et al. Prevention of transition from incipient to overt nephropathy with telmisartan in patients with type 2 diabetes. Diabetes Care. 2007;30(6):1577–1578. doi:10.2337/dc06-1998
  • Schmieder RE, Delles C, Mimran A, Fauvel JP, Ruilope LM. Impact of telmisartan versus ramipril on renal endothelial function in patients with hypertension and type 2 diabetes. Diabetes Care. 2007;30(6):1351–1356. doi:10.2337/dc06-1551
  • Amoghimath S, Suresha R. Effect of telmisartan on blood glucose levels and blood lipid levels in streptozotocin induced diabetic rats. Biomed Pharmacol J. 2019;12(3):1303–1308. doi:10.13005/bpj/1758
  • Tojo A, Hatakeyama S, Kinugasa S, Nangaku M. Angiotensin receptor blocker telmisartan suppresses renal gluconeogenesis during starvation. Diabetes Metab Syndr Obes. 2015;8:103–113. doi:10.2147/DMSO.S78771
  • Sharma AK, Kanawat DS, Mishra A, et al. Dual therapy of vildagliptin and telmisartan on diabetic nephropathy in experimentally induced type 2 diabetes mellitus rats. J Renin-Angio-Aldo S. 2014;15(4):410–418.
  • Senapaty S, Rath B. Biochemical effects of telmisartan versus ramipril in experimental diabetic nephropathy. Int J Health Sci Res. 2015;5(5):195–202.
  • Salama RM, Schaalan MF, Ibrahim ME, Khalifa AE, Elkoussi AA. Effectiveness of telmisartan as an adjunct to metformin in treating type II diabetes mellitus in rats. Open J Endocr Metab Dis. 2013;3:186–196. doi:10.4236/ojemd.2013.33026
  • Hamed AA, Malek HA. Effect of telmisartan in experimentally induced diabetetes mellitus in rats. Int J Health Sci. 2007;1(2):249.
  • Barnett A. Preventing renal complications in type 2 diabetes: results of the diabetics exposed to telmisartan and enalapril trial. J Am Soc Nephrol. 2006;17(4 suppl 2):S132–S5. doi:10.1681/ASN.2005121326
  • Barzilay JI, Gao P, Rydén L, et al. Effects of telmisartan on glucose levels in people at high risk for cardiovascular disease but free from diabetes: the TRANSCEND study. Diabetes Care. 2011;34(9):1902–1907. doi:10.2337/dc11-0545
  • Muñoz-Torrero JFS, Rivas MD, Costo A, et al. Telmisartan improves insulin resistance in patients with low cytokine levels. J Investig Med. 2011;59(3):602–605. doi:10.2310/JIM.0b013e31820bf26b
  • Sengul AM, Altuntas Y, Kürklü A, Aydın L. Beneficial effect of lisinopril plus telmisartan in patients with type 2 diabetes, microalbuminuria and hypertension. Diabetes Res Clin Pract. 2006;71(2):210–219. doi:10.1016/j.diabres.2005.06.010
  • Nagel JM, Tietz AB, Göke B, Parhofer KG. The effect of telmisartan on glucose and lipid metabolism in nondiabetic, insulin-resistant subjects. Metabolism. 2006;55(9):1149–1154. doi:10.1016/j.metabol.2006.04.011
  • Mazerska M, Myśliwiec M. Telmisartan lowers albuminuria in type 2 diabetic patients treated with angiotensin enzyme inhibitors. Adv Med Sci. 2009;54(1). doi:10.2478/v10039-009-0015-6
  • Makino H, Haneda M, Babazono T, et al. Microalbuminuria reduction with telmisartan in normotensive and hypertensive Japanese patients with type 2 diabetes: a post-hoc analysis of The Incipient to Overt: angiotensin II Blocker, Telmisartan, Investigation on Type 2 Diabetic Nephropathy (INNOVATION) study. Hypertens Res. 2008;31(4):657–664.
  • Al-Hammami FA, Hasan OA. Comparative study of lisinopril versus telmisartan effects on oxidative stress in diabetic type 2 hypertensive patients. Raf J Sci. 2012;23(2E):34–41.
  • Vitale C, Mercuro G, Castiglioni C, et al. Metabolic effect of telmisartan and losartan in hypertensive patients with metabolic syndrome. Cardiovasc Diabetol. 2005;4(1):6. doi:10.1186/1475-2840-4-6
  • De Luis D, Conde R, González-Sagrado M, et al. Effects of telmisartan vs olmesartan on metabolic parameters, insulin resistance and adipocytokines in hypertensive obese patients. Nutr Hosp. 2010;25(2):275–279.