230
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Lycopene Improves the Metformin Effects on Glycemic Control and Decreases Biomarkers of Glycoxidative Stress in Diabetic Rats

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3117-3135 | Published online: 07 Sep 2020

References

  • Durazzo A, D’addezio L, Camilli E, et al. From plant compounds to botanicals and back: a current snapshot. Molecules. 2018;23(8):e1844. doi:10.3390/molecules23081844
  • Salehi B, Ata A, Anil Kumar N, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. 2019;9(10):e551. doi:10.3390/biom9100551
  • Payab M, Hasani-Ranjbar S, Shahbal N, et al. Effect of the herbal medicines in obesity and metabolic syndrome: a systematic review and meta‐analysis of clinical trials. Phytother Res. 2020;34(3):526–545. doi:10.1002/ptr.6547
  • Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–1585. doi:10.1007/s00125-017-4342-z
  • Foretz M, Guigas B, Viollet B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat Rev Endocrinol. 2019;15(10):569–589. doi:10.1038/s41574-019-0242-2
  • Cahn A, Cefalu WT. Clinical considerations for use of initial combination therapy in type 2 Diabetes. Diabetes Care. 2016;39(Suppl 2):137–145. doi:10.2337/dcS15-3007
  • Akhter MS, Uppal P. Toxicity of metformin and hypoglycemic therapies. Adv Chronic Kidney D. 2020;27(1):18–30. doi:10.1053/j.ackd.2019.08.004
  • Prabhakar PK, Kumar A, Doble M. Combination therapy: a new strategy to manage diabetes and its complications. Phytomedicine. 2014;21(2):123–130. doi:10.1016/j.phymed.2013.08.020
  • Venkatakrishnan K, Chiu HF, Wang CK. Popular functional foods and herbs for the management of type-2-diabetes mellitus: a comprehensive review with special reference to clinical trials and its proposed mechanism. J Funct Foods. 2019;57:425–438. doi:10.1016/j.jff.2019.04.039
  • Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–126. doi:10.4103/0973-7847.70902
  • Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: a review of recent findings. J Food Drug Anal. 2017;25(1):84–92. doi:10.1016/j.jfda.2016.10.017
  • Zhang Y, Li X, Zou D, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab. 2008;93(7):2559–2565. doi:10.1210/jc.2007-2404
  • Grabowska M, Wawrzyniak D, Rolle K, et al. Let food be your medicine: nutraceutical properties of lycopene. Food Funct. 2019;10(6):3090–3102. doi:10.1039/C9FO00580C
  • Przybylska S. Lycopene–a bioactive carotenoid offering multiple health benefits: a review. Int J Food Sci Tech. 2020;55(1):11–32. doi:10.1111/ijfs.14260
  • Banihani SA. Tomato (Solanum lycopersicum L.) and type 2 diabetes. Int J Food Prop. 2018;21(1):99–105. doi:10.1080/10942912.2018.1439959
  • Pierine DT, Navarro ME, Minatel IO, et al. Lycopene supplementation reduces TNF-α via RAGE in the kidney of obese rats. Nutr Diabetes. 2014;4:e142. doi:10.1038/nutd.2014.39
  • Tabrez S, Al‐Shali KZ, Ahmad S. Lycopene powers the inhibition of glycation‐induced diabetic nephropathy: a novel approach to halt the AGE‐RAGE axis menace. Biofactors. 2015;41(5):372–381. doi:10.1002/biof.1238
  • Assis RP, Arcaro CA, Gutierres VO, et al. Combined effects of curcumin and lycopene or bixin in yoghurt on inhibition of LDL oxidation and increases in HDL and paraoxonase levels in streptozotocin-diabetic rats. Int J Mol Sci. 2017;18:e332. doi:10.3390/ijms18040332
  • Roxo DF, Arcaro CA, Gutierres VO, et al. Curcumin combined with metformin decreases glycemia and dyslipidemia, and increases paraoxonase activity in diabetic rats. Diabetol Metab Syndr. 2019;11(1):33. doi:10.1186/s13098-019-0431-0
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276–287. doi:10.1016/0003-2697(71)90370-8
  • Beers RF Jr, Sizer IW. A spectrophotometric method of measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195(1):133–140.
  • Rush JWE, Sandiford SD. Plasma glutathione peroxidase in healthy young adults: influence of gender and physical activity. Clin Biochem. 2003;36(5):345–351. doi:10.1016/S0009-9120(03)00039-0
  • Carlberg I, Mannervik B. Glutathione reductase. Method Enzymol. 1985;113:484–490. doi:10.1016/S0076-6879(85)13062-4
  • Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25(1):192–205. doi:10.1016/0003-2697(68)90092-4
  • Kohn HI, Liversedge M. On a new aerobic metabolite whose production by brain is inhibited by apomorphine, emetine, ergotamine, epinephrine, and menadione. J Pharmacol Exp Ther. 1944;82(3):292–300.
  • Levine RL, Williams JA, Stadtman ER, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1944;233:346–357. doi:10.1016/s0076-6879(94)33040-9
  • Costa MC, Lima TFO, Arcaro CA, et al. Trigonelline and curcumin alone, but not in combination, counteract oxidative stress and inflammation and increase glycation product detoxification in the liver and kidney of mice with high-fat diet-induced obesity. J Nutr Biochem. 2020;76:108303. doi:10.1016/j.jnutbio.2019.108303
  • Meier JJ, Baller B, Menge BA, Gallwitz B, Schmidt WE, Nauck MA. Excess glycaemic excursions after an oral glucose tolerance test compared with a mixed meal challenge and self-measured home glucose profiles: is the OGTT a valid predictor of postprandial hyperglycaemia and vice versa? Diabetes Obes Metab. 2009;11(3):213–222. doi:10.1111/j.1463-1326.2008.00922.x
  • Gutierres VO, Assis RP, Arcaro CA, et al. Curcumin improves the effect of a reduced insulin dose on glycemic control and oxidative stress in streptozotocin‐diabetic rats. Phytother Res. 2019;33(4):976–988. doi:10.1002/ptr.6291
  • Sadrzadeh-Yeganeh H, Elmadfa I, Djazayery A, Jalali M, Heshmat R, Chamary M. The effects of probiotic and conventional yoghurt on lipid profile in women. Br J Nutr. 2010;103(12):1778–1783. doi:10.1017/S0007114509993801
  • Balakumar M, Prabhu D, Sathishkumar C, et al. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur J Nutr. 2018;57(1):279–295. doi:10.1007/s00394-016-1317-7
  • Gutierres VO, Pinheiro CM, Assis RP, Vendramini RC, Pepato MT, Brunetti IL. Curcumin-supplemented yoghurt improves physiological and biochemical markers of experimental diabetes. Br J Nutr. 2012;108(3):440–448. doi:10.1017/S0007114511005769
  • Zeng Z, He W, Jia Z, Hao S. Lycopene improves insulin sensitivity through inhibition of STAT3/Srebp-1c-mediated lipid accumulation and inflammation in mice fed a high-fat diet. Exp Clin Endocrinol Diabetes. 2017;125(9):610–617. doi:10.1055/s-0043-101919
  • Zidani S, Benakmoum A, Ammouche A, Benali Y, Bouhadef A, Abbeddou S. Effect of dry tomato peel supplementation on glucose tolerance, insulin resistance, and hepatic markers in mice fed high-saturated-fat/high-cholesterol diets. J Nutr Biochem. 2017;40:64–171. doi:0.1016/j.jnutbio.2016.11.001
  • Zhu R, Chen B, Bai Y, et al. Lycopene in protection against obesity and diabetes: a mechanistic review. Pharmacol Res. 2020;159:104966. doi:10.1016/j.phrs.2020.104966
  • Ozmen O, Topsakal S, Haligur M, Aydogan A, Dincoglu D. Effects of caffeine and lycopene in experimentally induced diabetes mellitus. Pancreas. 2016;45(4):579–583. doi:10.1097/MPA.0000000000000489
  • Li H, Chen A, Zhao L, et al. Effect of tomato consumption on fasting blood glucose and lipid profiles: a systematic review and meta‐analysis of randomized controlled trials. Phytother Res. 2020;34(8):1956–1965. doi:10.1002/ptr.6660
  • Prasad AK, Mishra PC. Modeling the mechanism of action of lycopene as a hydroxyl radical scavenger. J Mol Model. 2014;20(5):2233. doi:10.1007/s00894-014-2233-5
  • Pennathur S, Maitra D, Byun J, et al. Potent antioxidative activity of lycopene: a potential role in scavenging hypochlorous acid. Free Radic Biol Med. 2010;49(2):205–213. doi:10.1016/j.freeradbiomed.2010.04.003
  • Bondeva T, Wolf G. Reactive oxygen species in diabetic nephropathy: friend or foe? Nephrol Dial Transpl. 2014;29(11):1998–2003. doi:10.1093/ndt/gfu037
  • Ghoshal K, Das S, Aich K, Goswami S, Chowdhury S, Bhattacharyya M. A novel sensor to estimate the prevalence of hypochlorous (HOCl) toxicity in individuals with type 2 diabetes and dyslipidemia. Clin Chim Acta. 2016;458:144–153. doi:10.1016/j.cca.2016.05.006
  • Ali MM, Agha FG. Amelioration of streptozotocin‐induced diabetes mellitus, oxidative stress and dyslipidemia in rats by tomato extract lycopene. Scand J Clin Lab Inv. 2009;69(3):371–379. doi:10.1080/00365510802658473
  • Van Stee MF, De Graaf AA, Groen AK. Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc Diabetol. 2018;17(1):94. doi:10.1186/s12933-018-0738-4
  • Corremans R, Vervaet BA, D’haese PC, Neven E, Verhulst A. Metformin: a candidate drug for renal diseases. Int J Mol Sci. 2018;20(1):42. doi:10.3390/ijms20010042
  • Karise I, Ornel Las F, Barbosa-Da-Silva S, et al. Liver and Metformin: lessons of a fructose diet in mice. Biochim Open. 2017;4:19–30. doi:10.1016/j.biopen.2017.01.002
  • Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H, Mansour MA. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem-Biol Interact. 2011;192(3):233–242. doi:10.1016/j.cbi.2011.03.014
  • Levy D, Reichert CO, Bydlowski SP. Paraoxonases activities and polymorphisms in elderly and old-age diseases: an overview. Antioxidants. 2019;8(5):118. doi:10.3390/antiox8050118
  • Mastorikou M, Mackness B, Liu Y, Mackness M. Glycation of paraoxonase‐1 inhibits its activity and impairs the ability of high‐density lipoprotein to metabolize membrane lipid hydroperoxides. Diabetic Med. 2008;25(9):1049–1055. doi:10.1111/j.1464-5491.2008.02546.x
  • Meaney E, Sierra‐Vargas P, Meaney A, et al. Does metformin increase paraoxonase activity in patients with the metabolic syndrome? Additional data from the MEFISTO study. Clin Transl Sci. 2012;5(3):265–268. doi:10.1111/j.1752-8062.2012.00391.x
  • Kinsky OR, Hargraves TL, Anumol T, et al. Metformin scavenges methylglyoxal to form a novel imidazolinone metabolite in humans. Chem Res. 2016;29(2):227–234. doi:10.1021/acs.chemrestox.5b00497
  • Ceriello A, Ihnat MA, Thorpe JE. The “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab. 2009;94(2):410–415. doi:10.1210/jc.2008-1824
  • Testa R, Bonfigli AR, Prattichizzo F, La Sala L, De Nigris V, Ceriello A. The “metabolic memory” theory and the early treatment of hyperglycemia in prevention of diabetic complications. Nutrients. 2017;9(5):437. doi:10.3390/nu9050437
  • Ceriello A. The emerging challenge in diabetes: the “metabolic memory”. Vasc Pharmacol. 2012;57(5–6):133–138. doi:10.1016/j.vph.2012.05.005
  • Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes. 2005;54(1):1–7. doi:10.2337/diabetes.54.1.1
  • Zeng YC, Peng LS, Zou L, et al. Protective effect and mechanism of lycopene on endothelial progenitor cells (EPCs) from type 2 diabetes mellitus rats. Biomed Pharmacother. 2017b;92:86–94. doi:10.1016/j.biopha.2017.05.018
  • McEneny J, Wade L, Young IS, et al. Lycopene intervention reduces inflammation and improves HDL functionality in moderately overweight middle-aged individuals. J Nutr Biochem. 2013;24(1):163–168. doi:10.1016/j.jnutbio.2012.03.015
  • Gunawardena HP, Silva R, Sivakanesan R, Ranasinghe P, Katulanda P. Poor glycaemic control is associated with increased lipid peroxidation and glutathione peroxidase activity in type 2 diabetes patients. Oxid Med Cell Longev. 2019;2019:9471697. doi:10.1155/2019/9471697
  • De Haan JB, Stefanovic N, Nikolic-Paterson D, et al. Kidney expression of glutathione peroxidase-1 is not protective against streptozotocin-induced diabetic nephropathy. Am J Physiol Renal Physiol. 2005;289(3):544–551. doi:10.1152/ajprenal.00088.2005