133
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Assessment of Cell-Free Long Non-Coding RNA-H19 and miRNA-29a, miRNA-29b Expression and Severity of Diabetes

, , , ORCID Icon, , , & ORCID Icon show all
Pages 3727-3737 | Published online: 14 Oct 2020

References

  • Rines AK, Sharabi K, Tavares CD, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov. 2016;15(11):786–804.
  • Hatting M, Tavares CDJ, Sharabi K, et al. Insulin regulation of gluconeogenesis. Ann N Y Acad Sci. 2018;1411(1):21–35.
  • Bernstein BE, Birney E, Dunham I, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–159. doi:10.1038/nrg2521
  • Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71:3–7. doi:10.1158/0008-5472.CAN-10-2483
  • Simion V, Haemmig S, Feinberg MW. LncRNAs in vascular biology and disease. Vascul Pharmacol. 2018;114:145–156. doi:10.1016/j.vph.2018.01.003
  • Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays. 2010;32:473–480. doi:10.1002/bies.200900170
  • Gao Y, Wu F, Zhou J, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014;42:13799–13811. doi:10.1093/nar/gku1160
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297.
  • Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. doi:10.1101/gr.082701.108
  • Guay C, Roggli E, Nesca V, et al. Diabetes mellitus, a microRNA-related disease? Transl Res. 2011;157:253–264.
  • Park SY, Jeong HJ, Yang WM, et al. Implications of microRNAs in the pathogenesis of diabetes. Arch Pharm Res. 2013;36:154–166. doi:10.1007/s12272-013-0017-6
  • Kriegel AJ, Liu Y, Fang Y, et al. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012;44:237–244. doi:10.1152/physiolgenomics.00141.2011
  • Eyholzer M, Schmid S, Wilkens L, et al. The tumor-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer. 2010;103:275–284. doi:10.1038/sj.bjc.6605751
  • Huang M, Zhong Z, Lv M, Shu J, Tian Q, Chen J, Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma.
  • Zhong M, Chen Y, Zhang G, Xu L, Ge W, Wu B. LncRNA H19 regulates PI3K–Akt signal pathway by functioning as a ceRNA and predicts poor prognosis in colorectal cancer: integrative analysis of dysregulated ncRNA‑associated ceRNA network. Cancer Cell Int. 2019;19(148). doi:10.1186/s12935-019-0866-2
  • Lv Mengxin, Zhong Z, Huang M, Tian Q, Jiang R, Chen J. lncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochim Biophys Acta Mol Cell Res. 2017;1864(10):1887–1899. doi:10.1016/j.bbamcr.2017.08.001
  • DeFronzo RA, Abdul-Ghani M. Type 2 diabetes can be prevented with early pharmacological intervention. Diabetes Care. 2011;34(Suppl. 2):S202–S209. doi:10.2337/dc11-s221
  • Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40. doi:10.1016/S0140-6736(11)60679-X
  • Berends LM, Ozanne SE. Early determinants of type-2 diabetes. Best Pract Res Clin Endocrinol Metab. 2012;26:569–580. doi:10.1016/j.beem.2012.03.002
  • Zhuo C, Jiang R, Lin X, et al. lncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget. 2017;8:1429–1437. doi:10.18632/oncotarget.13637
  • Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 2012;40:6391–6400. doi:10.1093/nar/gks296
  • Arnold N, Koppula P, Gul R, et al. Regulation of cardiac expression of the diabetic marker microRNA miR-29. PLoS One. 2014;25:e103284. doi:10.1371/journal.pone.0103284
  • Bagge A, Clausen TR, Larsen S, et al. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion. Biochem Biophys Res Commun. 2012;426:266–272. doi:10.1016/j.bbrc.2012.08.082
  • Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in prediabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 2011;48:61–69. doi:10.1007/s00592-010-0226-0
  • Long J, Wang Y, Wang W, et al. MicroRNA-29c is a signature microRNA under high glucose conditions that targets sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem. 2011;286:11837–11848. doi:10.1074/jbc.M110.194969
  • Roggli E, Gattesco S, Caille D, et al. Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes. 2012;61:1742–1751. doi:10.2337/db11-1086
  • Dahlmans D, Houzelle A, Jörgensen JA, et al. Evaluation of muscle microRNA expression in relation to human peripheral insulin sensitivity: a cross-sectional study in metabolically distinct subject groups. Front. Physiol. 2017;8:711. doi:10.3389/fphys.2017.00711
  • Massart J, Sjogren RJO, Lundell LS, et al. Altered miR-29 expression in type 2 diabetes influences glucose and lipid metabolism in skeletal muscle. Diabetes. 2017;66:1807–1818. doi:10.2337/db17-0141
  • Zhou Y, Gu P, Shi W, et al. MicroRNA-29a induces insulin resistance by targeting PPARd in skeletal muscle cells. Int J Mol Med. 2016;37:931–938. doi:10.3892/ijmm.2016.2499
  • Song H, Ding L, Zhang S, et al. MiR-29 family members interact with SPARC to regulate glucose metabolism.MiR-29 family members interact with SPARC to regulate glucose metabolism. Biochim Biophys Res Commun. 2018;497:667–674. doi:10.1016/j.bbrc.2018.02.129
  • He A, Zhu L, Gupta N, et al. Overexpression of micro ribonucleic acid 29, highly up regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol. 2007;21:2785–2794. doi:10.1210/me.2007-0167
  • Karolina DS, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One. 2011;6:e22839. doi:10.1371/journal.pone.0022839
  • Pengyu Z, Yan Y, Xiying F, et al. The differential expression of long noncoding RNAs in Type 2 diabetes mellitus and latent autoimmune diabetes in adults. Int J Endocrinol. 2020;Article ID 9235329.
  • Peng W, Wang Q, Jiang C, Chen C, Liu Y, ChenY, et al. MicroRNA-29a is involved lipid metabolism dysfunction and insulin resistance in C2C12 myotubes by targeting PPARδ. Mol Med Rep. 2018;17:8493–8501.
  • Lin X, Luo C, Dongjuan H, et al. Urinary miRNA-29a-3p levels are associated with metabolic parameters via regulation of IGF1 in patients with metabolic syndrome. Biomed Rep. 2019;10:250–258.
  • Zhi Liang Y, Li J, Xiao H, He Y, Zhang L, Yan Y. Identification of stress‐related microRNA biomarkers in type 2 diabetes mellitus: A systematic review and meta‐analysis. Journal of Diabetes. 2020;12(9):633–644. doi:10.1111/1753-0407.12643