123
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Association of Urinary Polycyclic Aromatic Hydrocarbons and Diabetes in Korean Adults: Data from the Korean National Environmental Health Survey Cycle 2 (2012–2014)

ORCID Icon & ORCID Icon
Pages 3993-4003 | Published online: 27 Oct 2020

References

  • Chevalier N, Fénichel P. Endocrine disruptors: new players in the pathophysiology of type 2 diabetes? Diabetes Metab. 2015;41(2):107–115. doi:10.1016/j.diabet.2014.09.005
  • Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi:10.1016/j.diabres.2018.02.023
  • Won JC, Lee JH, Kim JH, et al. Diabetes fact sheet in Korea, 2016: an appraisal of current status. Diabetes Metab J. 2018;42(5):415–424. doi:10.4093/dmj.2018.0017
  • Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185–1200. doi:10.7150/ijms.10001
  • Abdel-Shafy H, Mansour M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petrol. 2016;25:107–123. doi:10.1016/j.ejpe.2015.03.011
  • Jeng HA, Pan CH, Diawara N, et al. Polycyclic aromatic hydrocarbon-induced oxidative stress and lipid peroxidation in relation to immunological alteration. Occup Environ Med. 2011;68(9):653–658. doi:10.1136/oem.2010.055020
  • Alshaarawy O, Zhu M, Ducatman A, Conway B, Andrew ME. Polycyclic aromatic hydrocarbon biomarkers and serum markers of inflammation. A positive association that is more evident in men. Environ Res. 2013;126:98–104. doi:10.1016/j.envres.2013.07.006
  • Khalil A, Villard PH, Dao MA, et al. Polycyclic aromatic hydrocarbons potentiate high-fat diet effects on intestinal inflammation. Toxicol Lett. 2010;196(3):161–167. doi:10.1016/j.toxlet.2010.04.010
  • Yun Y, Zhang Y, Li G, Chen S, Sang N. Embryonic exposure to oxy-polycyclic aromatic hydrocarbon interfere with pancreatic β-cell development in zebrafish via altering DNA methylation and gene expression. Sci Total Environ. 2019;660:1602–1609. doi:10.1016/j.scitotenv.2018.12.476
  • Kim YH, Lee YS, Lee DH, Kim DS. Polycyclic aromatic hydrocarbons are associated with insulin receptor substrate 2 methylation in adipose tissues of Korean women. Environ Res. 2016;150:47–51.
  • Stallings-Smith S, Mease A, Johnson TM, Arikawa AY. Exploring the association between polycyclic aromatic hydrocarbons and diabetes among adults in the United States. Environ Res. 2018;166:588–594. doi:10.1016/j.envres.2018.06.041
  • Ranjbar M, Rotondi MA, Ardern CI, Kuk JL. Urinary biomarkers of polycyclic aromatic hydrocarbons are associated with cardiometabolic health risk. PLoS One. 2015;10(9):e0137536.
  • Hu H, Kan H, Kearney GD, Xu X. Associations between exposure to polycyclic aromatic hydrocarbons and glucose homeostasis as well as metabolic syndrome in nondiabetic adults. Sci Total Environ. 2015;505:56–64. doi:10.1016/j.scitotenv.2014.09.085
  • Alshaarawy O, Zhu M, Ducatman AM, Conway B, Andrew ME. Urinary polycyclic aromatic hydrocarbon biomarkers and diabetes mellitus. Occup Environ Med. 2014;71(6):437–441. doi:10.1136/oemed-2013-101987
  • Wang L, Hou J, Hu C, et al. Mediating factors explaining the associations between polycyclic aromatic hydrocarbons exposure, low socioeconomic status and diabetes: a structural equation modeling approach. Sci Total Environ. 2019;648:1476–1483. doi:10.1016/j.scitotenv.2018.08.255
  • Hou J, Sun H, Zhou Y, et al. Environmental exposure to polycyclic aromatic hydrocarbons, kitchen ventilation, fractional exhaled nitric oxide, and risk of diabetes among Chinese females. Indoor Air. 2018;28(3):383–393. doi:10.1111/ina.12453
  • Yang L, Yan K, Zeng D, et al. Association of polycyclic aromatic hydrocarbons metabolites and risk of diabetes in coke oven workers. Environ Pollut. 2017;223:305–310. doi:10.1016/j.envpol.2017.01.027
  • Hou J, Sun H, Xiao L, et al. Combined effect of urinary monohydroxylated polycyclic aromatic hydrocarbons and impaired lung function on diabetes. Environ Res. 2016;148:467–474. doi:10.1016/j.envres.2016.03.038
  • Bae S, Kwon HJ. Current state of research on the risk of morbidity and mortality associated with air pollution in Korea. Yonsei Med J. 2019;60(3):243–256. doi:10.3349/ymj.2019.60.3.243
  • Choi W, Kim S, Baek YW, et al. Exposure to environmental chemicals among Korean adults-updates from the second Korean National Environmental Health Survey (2012–2014). Int J Hyg Environ Health. 2017;220(2):29–35. doi:10.1016/j.ijheh.2016.10.002
  • Taskforce IOJMHCAPLIAfSoO. The Asia-Pacific perspective: redefining obesity and its treatment. 2000:8–14.
  • Control CfD, Prevention %J Washington DC. Fourth National Report on Human Exposure to Environmental Chemicals, Update Tables. 2015.
  • Canada H Fourth Report on Human Biomonitoring of Environmental Chemicals in Canada. 2017.
  • Malkin R, Kiefer M, Tolos W. 1-Hydroxypyrene levels in coal-handling workers at a coke oven. J Occup Environ Med. 1996;38(11):1141–1144. doi:10.1097/00043764-199611000-00014
  • Nguyen TT, Kawanami S, Kawai K, et al. Urinary 1-hydroxypyrene and 8-hydroxydeoxyguanosine levels among coke-oven workers for 2 consecutive days. J Occup Health. 2014;56(3):178–185. doi:10.1539/joh.13-0222-OA
  • Brucker N, Charão MF, Moro AM, et al. Atherosclerotic process in taxi drivers occupationally exposed to air pollution and co-morbidities. Environ Res. 2014;131:31–38. doi:10.1016/j.envres.2014.02.012
  • Ding YS, Trommel JS, Yan XJ, Ashley D, Watson CH. Determination of 14 polycyclic aromatic hydrocarbons in mainstream smoke from domestic cigarettes. Environ Sci Technol. 2005;39(2):471–478. doi:10.1021/es048690k
  • Koh DH, Park JH, Lee SG, et al. Comparison of polycyclic aromatic hydrocarbons exposure across occupations using urinary metabolite 1-hydroxypyrene. Ann Work Expo Health. 2020;64(4):445–454. doi:10.1093/annweh/wxaa014
  • Gehle K Toxicity of polycyclic aromatic hydrocarbons (PAHs). 2009.
  • WHO. Guidelines approved by the guidelines review committee. In: WHO Guidelines for Indoor Air Quality: Selected Pollutants. Geneva: World Health Organization; 2010.
  • Obana H, Hori S, Kashimoto T, Kunita N. Polycyclic aromatic hydrocarbons in human fat and liver. Bull Environ Contam Toxicol. 1981;27(1):23–27. doi:10.1007/BF01610981
  • Agudelo-Castañeda DM, Teixeira EC, Schneider IL, Lara SR, Silva LFO. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM(1.0) of urban environments: carcinogenic and mutagenic respiratory health risk by age groups. Environ Pollut. 2017;224:158–170. doi:10.1016/j.envpol.2017.01.075
  • Huang W, Grainger J, Patterson DG, et al. Comparison of 1-hydroxypyrene exposure in the US population with that in occupational exposure studies. Int Arch Occup Environ Health. 2004;77(7):491–498. doi:10.1007/s00420-004-0529-y
  • Best EA, Juarez-Colunga E, James K, LeBlanc WG, Serdar B. Biomarkers of exposure to polycyclic aromatic hydrocarbons and cognitive function among elderly in the United States (National Health and Nutrition Examination Survey: 2001–2002). PLoS One. 2016;11(2):e0147632.
  • Fang GC, Wu YS, Chen JC, Chang CN, Ho TT. Characteristic of polycyclic aromatic hydrocarbon concentrations and source identification for fine and coarse particulates at Taichung Harbor near Taiwan Strait during 2004–2005. Sci Total Environ. 2006;366(2–3):729–738. doi:10.1016/j.scitotenv.2005.09.075
  • Künzli N. The public health relevance of air pollution abatement. Eur Respir J. 2002;20(1):198–209. doi:10.1183/09031936.02.00401502
  • Slezakova K, Peixoto C, Carmo Pereira MD, Morais S. (Ultra) Fine particle concentrations and exposure in different indoor and outdoor microenvironments during physical exercising. J Toxicol Environ Health A. 2019;82(9):591–602. doi:10.1080/15287394.2019.1636494
  • Braniš M, Safránek J, Hytychová A. Indoor and outdoor sources of size-resolved mass concentration of particulate matter in a school gym-implications for exposure of exercising children. Environ Sci Pollut Res Int. 2011;18(4):598–609. doi:10.1007/s11356-010-0405-0
  • Yang L, Zhou Y, Sun H, et al. Dose-response relationship between polycyclic aromatic hydrocarbon metabolites and risk of diabetes in the general Chinese population. Environ Pollut. 2014;195:24–30. doi:10.1016/j.envpol.2014.08.012
  • Patri M, Padmini A, Babu P. Polycyclic aromatic hydrocarbons in air and their neurotoxic potency in association with oxidative stress: a brief perspective. Ann Neurosci. 2010;16(1):22–30.
  • Zhang XJ, Shi Z, Lyv JX, He X, Englert NA, Zhang SY. Pyrene is a novel Constitutive Androstane Receptor (CAR) activator and causes hepatotoxicity by CAR. Toxicol Sci. 2015;147(2):436–445. doi:10.1093/toxsci/kfv142
  • Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm J. 2016;24(5):547–553. doi:10.1016/j.jsps.2015.03.013
  • Farzan SF, Chen Y, Trachtman H, Trasande L. Urinary polycyclic aromatic hydrocarbons and measures of oxidative stress, inflammation and renal function in adolescents: NHANES 2003–2008. Environ Res. 2016;144(Pt A):149–157. doi:10.1016/j.envres.2015.11.012
  • Kim J-H, Yamaguchi K, Lee S-H, et al. Evaluation of polycyclic aromatic hydrocarbons in the activation of early growth response-1 and peroxisome proliferator activated receptors. Toxicol Sci. 2005;85(1):585–593. doi:10.1093/toxsci/kfi118
  • Yan Z, Zhang H, Maher C, et al. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR) γ methylation in offspring, grand-offspring mice. PLoS One. 2014;9(10):e110706. doi:10.1371/journal.pone.0110706
  • Rao X, Patel P, Puett R, Rajagopalan S. Air pollution as a risk factor for type 2 diabetes. Toxicol Sci. 2015;143(2):231–241. doi:10.1093/toxsci/kfu250
  • Esposito K, Petrizzo M, Maiorino MI, Bellastella G, Giugliano D. Particulate matter pollutants and risk of type 2 diabetes: a time for concern? Endocrine. 2016;51(1):32–37. doi:10.1007/s12020-015-0638-2
  • Bulka CM, Mabila SL, Lash JP, Turyk ME, Argos M. Arsenic and obesity: a comparison of urine dilution adjustment methods. Environ Health Perspect. 2017;125(8):087020. doi:10.1289/EHP1202
  • O’Brien KM, Upson K, Cook NR, Weinberg CR. Environmental chemicals in urine and blood: improving methods for creatinine and lipid adjustment. Environ Health Perspect. 2016;124(2):220–227. doi:10.1289/ehp.1509693