99
Views
1
CrossRef citations to date
0
Altmetric
Original Research

CHDH-PNPLA3 Gene–Gene Interactions Predict Insulin Resistance in Children with Obesity

ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 4483-4494 | Published online: 19 Nov 2020

References

  • NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017. doi:10.1016/S0140-6736(17)32129-3
  • NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387:1377–1396. doi:10.1016/S0140-6736(16)30054-X
  • Styne DM, Arslanian SA, Connor EL, et al. Pediatric obesity-assessment, treatment, and prevention: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2017;102:709–757. doi:10.1210/jc.2016-2573
  • Lentferink YE, Elst MAJ, Knibbe CAJ, van der Vorst MMJ. Predictors of insulin resistance in children versus adolescents with obesity. J Obes. 2017;2017:3793868. doi:10.1155/2017/3793868
  • Lomonaco R, Ortiz-Lopez C, Orsak B, et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology. 2012;55:1389–1397. doi:10.1002/hep.25539
  • Bugianesi E, Gastaldelli A, Vanni E, et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia. 2005;48:634–642. doi:10.1007/s00125-005-1682-x
  • Vos MB, Abrams SH, Barlow SE, et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: recommendations from the expert committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr. 2017;64:319–334. doi:10.1097/MPG.0000000000001482
  • Goyal NP, Schwimmer JB. The progression and natural history of pediatric nonalcoholic fatty liver disease. Clin Liver Dis. 2016;20:325–338. doi:10.1016/j.cld.2015.10.003
  • Tobisch B, Blatniczky L, Barkai L. Cardiometabolic risk factors and insulin resistance in obese children and adolescents: relation to puberty. Pediatr Obes. 2015;10:37–44. doi:10.1111/j.2047-6310.2013.00202.x
  • Nobili V, Alisi A, Valenti L, et al. NAFLD in children: new genes, new diagnostic modalities and new drugs. Nat Rev Gastroenterol Hepatol. 2019;16:517–530. doi:10.1038/s41575-019-0169-z
  • Dongiovanni P, Stender S, Pietrelli A, et al. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J Intern Med. 2018;283:356–370. doi:10.1111/joim.12719
  • Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. 2011;53:1883–1894. doi:10.1002/hep.24283
  • Corbin KD, Abdelmalek MF, Spencer MD, et al. Genetic signatures in choline and 1-carbon metabolism are associated with the severity of hepatic steatosis. FASEB J. 2013;27:1674–1689. doi:10.1096/fj.12-219097
  • Wallace TC, Blusztajn JK, Caudill MA, et al. Choline: the neurocognitive essential nutrient of interest to obstetricians and gynecologists. J Diet Suppl. 2019;1–20. doi:10.1080/19390211.2019.1639875
  • de Onis M, Onyango AW, Borghi E, et al. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–667. doi:10.2471/BLT.07.043497
  • Serafim V, Chirita-Emandi A, Andreescu N, et al. Single nucleotide polymorphisms in PEMT and MTHFR genes are associated with omega 3 and 6 fatty acid levels in the red blood cells of children with obesity. Nutrients. 2019;11:2600. doi:10.3390/nu11112600
  • de Onis M, Wijnhoven TMA, Onyango AW. Worldwide practices in child growth monitoring. J Pediatr. 2004;144:461–465. doi:10.1016/j.jpeds.2003.12.034
  • Report of a WHO Expert Committee. Physical status: the use and interpretation of anthropometry. World Health Organ Tech Rep Ser. 1995;854:1–452.
  • Șerban CL, Sima A, Hogea CM, et al. Assessment of nutritional intakes in individuals with obesity under medical supervision. A cross-sectional study. Int J Environ Res Public Health. 2019;16:3036. doi:10.3390/ijerph16173036
  • Lazzer S, Agosti F, De Col A, Sartorio A. Development and cross-validation of prediction equations for estimating resting energy expenditure in severely obese Caucasian children and adolescents. Br J Nutr. 2006;96:973–979. doi:10.1017/bjn20061941
  • Moran A, Jacobs DR, Steinberger J, et al. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes. 1999;48:2039–2044. doi:10.2337/diabetes.48.10.2039
  • Kurtoğlu S, Hatipoğlu N, Mazıcıoğlu M, et al. Insulin resistance in obese children and adolescents: HOMA−IR cut−off levels in the prepubertal and pubertal periods. J Clin Res Pediatr Endocrinol. 2010;2:100–106. doi:10.4274/jcrpe.v2i3.100
  • Kirsch SH, Herrmann W, Rabagny Y, Obeid R. Quantification of acetylcholine, choline, betaine, and dimethylglycine in human plasma and urine using stable-isotope dilution ultra performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:3338–3344. doi:10.1016/j.jchromb.2010.10.016
  • Chirita-Emandi A, Barbu CG, Cinteza EE, et al. Overweight and underweight prevalence trends in children from Romania - pooled analysis of cross-sectional studies between 2006 and 2015. Obes Facts. 2016;9:206–220. doi:10.1159/000444173
  • Fox C, Bernardino L, Cochran J, et al. Inappropriate use of homeostasis model assessment cutoff values for diagnosing insulin resistance in pediatric studies. J Am Osteopath Assoc. 2017;117:689–696. doi:10.7556/jaoa.2017.135
  • van der Aa MP, Fazeli Farsani S, Knibbe CAJ, et al. Population-based studies on the epidemiology of insulin resistance in children. J Diabetes Res. 2015;2015:1–9. doi:10.1155/2015/362375
  • Geer EB, Shen W. Gender differences in insulin resistance, body composition, and energy balance. Gend Med. 2009;6:60–75. doi:10.1016/j.genm.2009.02.002
  • Bacopoulou F, Efthymiou V, Landis G, et al. Waist circumference, waist-to-hip ratio and waist-to-height ratio reference percentiles for abdominal obesity among Greek adolescents. BMC Pediatr. 2015;15:50. doi:10.1186/s12887-015-0366-z
  • Gomes TN, Katzmarzyk PT, Hedeker D, et al. Correlates of compliance with recommended levels of physical activity in children. Sci Rep. 2017;7. doi:10.1038/s41598-017-16525-9
  • Ali O, Cerjak D, Kent JW, et al. Obesity, central adiposity and cardiometabolic risk factors in children and adolescents: a family-based study. Pediatr Obes. 2014;9:e58–62. doi:10.1111/j.2047-6310.2014.218.x
  • Love-Osborne K, Butler N, Gao D, Zeitler P. Elevated fasting triglycerides predict impaired glucose tolerance in adolescents at risk for type 2 diabetes. Pediatr Diabetes. 2006;7:205–210. doi:10.1111/j.1399-5448.2006.00179.x
  • Gao X, Randell E, Zhou H, Sun G, Ginsberg SD. Higher serum choline and betaine levels are associated with better body composition in male but not female population. PLoS One. 2018;13(2):e0193114. doi:10.1371/journal.pone.0193114
  • Gao X, Wang Y, Sun G. High dietary choline and betaine intake is associated with low insulin resistance in the Newfoundland population. Nutrition. 2017;33:28–34. doi:10.1016/j.nut.2016.08.005
  • Millard HR, Musani SK, Dibaba DT, et al. Dietary choline and betaine; associations with subclinical markers of cardiovascular disease risk and incidence of CVD, coronary heart disease and stroke: the Jackson Heart Study. Eur J Nutr. 2018;57(1):51–60. doi:10.1007/s00394-016-1296-8
  • Virtanen JK, Tuomainen T, Voutilainen S. Dietary intake of choline and phosphatidylcholine and risk of type 2 diabetes in men: the Kuopio Ischaemic heart disease risk factor study. Eur J Nutr. 2020. doi:10.1007/s00394-020-02223-2
  • Dibaba DT, Johnson KC, Kucharska-Newton AM, Meyer K, Zeisel SH, Bidulescu A. The association between dietary choline and betaine with the risk of type 2 diabetes: the Atherosclerosis Risk in Communities (ARIC) study [published online ahead of print, 2020 Sep 8]. Diabetes Care. 2020;dc200733. doi:10.2337/dc20-0733
  • Lauritzen L, Harsløf LBS, Hellgren LI, et al. Fish intake, erythrocyte n −3 fatty acid status and metabolic health in Danish adolescent girls and boys. Br J Nutr. 2012;107:697–704. doi:10.1017/S0007114511002418
  • Lotta LA, Gulati P, Day FR, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017;49:17–26. doi:10.1038/ng.3714
  • Ramos-Lopez O, Milagro FI, Allayee H, et al. Guide for current nutrigenetic, nutrigenomic, and nutriepigenetic approaches for precision nutrition involving the prevention and management of chronic diseases associated with obesity. LFG. 2017;10:43–62. doi:10.1159/000477729
  • Chattopadhyay A, Lu T-P. Gene-gene interaction: the curse of dimensionality. Ann Transl Med. 2019;7:813. doi:10.21037/atm.2019.12.87
  • Gola D, Mahachie John JM, van Steen K, König IR. A roadmap to multifactor dimensionality reduction methods. Brief Bioinform. 2016;17:293–308. doi:10.1093/bib/bbv038
  • Mostowska A, Hozyasz KK, Wojcicki P, et al. Associations of folate and choline metabolism gene polymorphisms with orofacial clefts. J Med Genet. 2010;47:809–815. doi:10.1136/jmg.2009.070029
  • Liu J, Yu G, Ren Y, et al. TrioMDR: detecting SNP interactions in trio families with model-based multifactor dimensionality reduction. Genomics. 2019;111:1176–1182. doi:10.1016/j.ygeno.2018.07.014
  • Motsinger AA, Ritchie MD. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum Genomics. 2006;2:318–328. doi:10.1186/1479-7364-2-5-318
  • Graae A-S, Hollensted M, Kloppenborg JT, et al. An adult-based insulin resistance genetic risk score associates with insulin resistance, metabolic traits and altered fat distribution in Danish children and adolescents who are overweight or obese. Diabetologia. 2018;61:1769–1779. doi:10.1007/s00125-018-4640-0
  • Dai G, Liu P, Li X, et al. Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease (NAFLD) susceptibility and severity: a meta-analysis. Medicine (Baltimore). 2019;98:e14324. doi:10.1097/MD.0000000000014324
  • Lu F-B, Hu E-D, Xu L-M, et al. The relationship between obesity and the severity of non-alcoholic fatty liver disease: systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol. 2018;12:491–502. doi:10.1080/17474124.2018.1460202
  • Qian Q-J, Yang L, Wang Y-F, et al. Gene-gene interaction between COMT and MAOA potentially predicts the intelligence of attention-deficit hyperactivity disorder boys in China. Behav Genet. 2010;40:357–365. doi:10.1007/s10519-009-9314-8
  • Sing CF, Stengård JH, Kardia SLR. Dynamic relationships between the genome and exposures to environments as causes of common human diseases. World Rev Nutr Diet. 2004;93:77–91. doi:10.1159/000081252
  • Yang R-C. Analysis of linear and non-linear genotype × environment interaction. Front Genet. 2014;5:227. doi:10.3389/fgene.2014.00227
  • Kaminen-Ahola N. Fetal alcohol spectrum disorders: genetic and epigenetic mechanisms. Prenat Diagn. 2020;40(9):1185–1192. doi:10.1002/pd.5731
  • Salgado ALF, Carvalho L, Oliveira AC, et al. Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arq Gastroenterol. 2010;47:165–169. doi:10.1590/s0004-28032010000200009