420
Views
3
CrossRef citations to date
0
Altmetric
Original Research

The Effect of Rooibos (Aspalathus linearis), Honeybush (Cyclopia intermedia) and Sutherlandia (Lessertia frutescens) on Testicular Insulin Signalling in Streptozotocin-Induced Diabetes in Wistar Rats

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1267-1280 | Published online: 19 Mar 2021

References

  • Hassan AA , Hassouna MM , Taketo T , Gagnon C , Elhilali MM . The effect of diabetes on sexual behavior and reproductive tract function in male rats. J Urol . 1993;149(1):148–154. doi:10.1016/S0022-5347(17)36028-7 8417201
  • Sanguinetti RE , Ogawa K , Kurohmaru M , Hayashi Y . Ultrastructural changes in mouse leydig cells after streptozotocin administration. Exp Anim . 1995;44(1):71–73. doi:10.1538/expanim.44.71 7705483
  • Bondarenko LB , Shayakhmetova GM , Byshovets TF , Kovalenko VM . Pyrazinamide-mediated changes in rat type I collagen and spermatogenesis indices. Acta Pol Pharm Drug Res . 2011;68(2):285–290.
  • López-Alvarenga JC , Zariñán T , Olivares A , González-Barranco J , Veldhuis JD , Ulloa-Aguirre A . Poorly controlled type I diabetes mellitus in young men selectively suppresses luteinizing hormone secretory burst mass. J Clin Endocrinol Metab . 2002;87(12):5507–5515. doi:10.1210/jc.2002-020803 12466346
  • Dhindsa S , Prabhakar S , Sethi M , Bandyopadhyay A , Chaudhuri A , Dandona P . Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab . 2004;89(11):5462–5468. doi:10.1210/jc.2004-0804 15531498
  • Maneesh M , Jayalakshmi H , Singh TA , Chakrabarti A . Impaired hypothalamic-pituitary-gonadal axis function in men with diabetes mellitus. Indian J Clin Biochem . 2006;21(1):165–168. doi:10.1007/BF02913088
  • Amaral S , Mota PC , Lacerda B , et al. Testicular mitochondrial alterations in untreated streptozotocin-induced diabetic rats. Mitochondrion . 2009;9(1):41–50. doi:10.1016/j.mito.2008.11.005 19100345
  • Cameron DF , Rountree J , Schultz RE , Repetta D , Murray FT . Sustained hyperglycemia results in testicular dysfunction and reduced fertility potential in BBWOR diabetic rats. Am J Physiol Endocrinol Metab . 1990;259(6):622–626. doi:10.1152/ajpendo.1990.259.6.e881
  • Hussein Z , Al-Qaisi J . Effect of diabetes mellitus type 2 on pituitary gland hormones (FSH, LH) in men and women in Iraq. J Al-Nahrain Univ Sci . 2012;15(3):75–79. doi:10.22401/jnus.15.3.11
  • Rezvani MR , Saadatjoo SA , Sorouri S , Fard MH . Comparison of serum free testosterone, luteinizing hormone and follicle stimulating hormone levels in diabetics and non-diabetics men- a case-control study. J Res Health Sci . 2012;12(2):98–100. doi:10.9790/0853-13536571 23241519
  • Agbaje IM , Rogers DA , McVicar CM , et al. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod . 2007;22(7):1871–1877. doi:10.1093/humrep/dem077 17478459
  • Agbaje IM , McVicar CM , Schock BC , et al. Increased concentrations of the oxidative DNA adduct 7,8-dihydro-8-oxo-2-deoxyguanosine in the germ-line of men with type 1 diabetes. Reprod Biomed Online . 2008;16(3):401–409. doi:10.1016/S1472-6483(10)60602-5 18339265
  • La Vignera S , Vicari E , Calogero AE , Condorelli R , Lanzafame F . Diabetes, oxidative stress and its impact on male fertility. J Andrological Sci . 2009;16(1):42–46.
  • Delfino M , Imbrogno N , Elia J , Capogreco F , Mazzilli F . Prevalence of diabetes mellitus in male partners of infertile couples. Minerva Urol e Nefrol . 2007;59(2):131–135.
  • Ballester J , Muñoz MC , Domínguez J , Rigau T , Guinovart JJ , Rodríguez-Gil JE . Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. J Androl . 2004;25(5):706–719. doi:10.1002/j.1939-4640.2004.tb02845.x 15292100
  • Schoeller EL , Albanna G , Frolova AI , Moley KH . Insulin rescues impaired spermatogenesis via the hypothalamic-pituitary- gonadal axis in Akita diabetic mice and restores male fertility. Diabetes . 2012;61(7):1869–1878. doi:10.2337/db11-1527 22522616
  • Gómez O , Ballester B , Romero A , et al. Expression and regulation of insulin and the glucose transporter GLUT8 in the testes of diabetic rats. Horm Metab Res . 2009;41(5):343–349. doi:10.1055/s-0028-1128146 19194835
  • Maresch CC , Stute DC , Alves MG , Oliveira PF , de Kretser DM , Linn T . Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Hum Reprod Update . 2018;24(1):86–105. doi:10.1093/humupd/dmx033 29136166
  • Butler AA , LeRoith D . Tissue-specific versus generalized gene targeting of the IGF1 and IGF1R genes and their roles in insulin-like growth factor physiology. Endocrinology . 2001;142(5):1685–1688. doi:10.1210/endo.142.5.8148 11316729
  • MacLean JA , Hu Z , Welborn JP , et al. The RHOX homeodomain proteins regulate the expression of insulin and other metabolic regulators in the testis. J Biol Chem . 2013;288(48):34809–34825. doi:10.1074/jbc.M113.486340 24121513
  • Griffeth RJ , Bianda V , Nef S . The emerging role of insulin-like growth factors in testis development and function. Basic Clin Androl . 2014;24(1):1–10. doi:10.1186/2051-4190-24-12 25780577
  • Nakayama Y , Yamamoto T , Abé SI . IGF-I, IGF-II and insulin promote differentiation of spermatogonia to primary spermatocytes in organ culture of newt testes. Int J Dev Biol . 1999;43(4):342–347. doi:10.1387/ijdb.10470651
  • Pitetti JL , Calvel P , Zimmermann C , et al. An essential role for insulin and IGF1 receptors in regulating sertoli cell proliferation, testis size, and FSH action in mice. Mol Endocrinol . 2013;27(5):814–827. doi:10.1210/me.2012-1258 23518924
  • Griffeth RJ , Carretero J , Burks DJ . Insulin receptor substrate 2 is required for testicular development. PLoS One . 2013;8(5):1–11. doi:10.1371/journal.pone.0062103
  • Yagci A , Zik B . Immunohistochemical localization of insulin-like growth factor-I receptor (IGF-IR) in the developing and mature rat testes. J Vet Med Ser C Anat Histol Embryol . 2006;35(5):305–309. doi:10.1111/j.1439-0264.2006.00689.x
  • Morton JF . Rooibos tea, aspalathus linearis, a caffeineless, low-tannin beverage. Econ Bot . 1983;37(2):164–173. doi:10.1007/BF02858780
  • van Wyk BE , Albrecht C . A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol . 2008;119(3):620–629. doi:10.1016/j.jep.2008.08.003 18761068
  • Awoniyi DO , Aboua YG , Marnewick J , Brooks N . The effects of rooibos (Aspalathus linearis), green te (Camellia sinensis) and commercial rooibos and green te supplements on epididymal sperm in oxidative stress-induced rats. Phytother Res . 2012;26(8):1231–1239. doi:10.1002/ptr.3717 22228422
  • Hong IS , Lee HY , Kim HP . Anti-oxidative effects of Rooibos tea (Aspalathus linearis) on immobilization-induced oxidative stress in rat brain. PLoS One . 2014;9(1):1–9. doi:10.1371/journal.pone.0087061
  • Sanderson M , Mazibuko SE , Joubert E , et al. Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation. Phytomedicine . 2014;21(2):109–117. doi:10.1016/j.phymed.2013.08.011 24060217
  • Marnewick JL , Joubert E , Swart P , Van Der Westhuizen F , Gelderblom WC . Modulation of hepatic drug metabolizing enzymes and oxidative status by rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), green and black (Camellia sinensis) teas in rats. J Agric Food Chem . 2003;51(27):8113–8119. doi:10.1021/jf0344643 14690405
  • Marnewick JL , van der Westhuizen FH , Joubert E , Swanevelder S , Swart P , Gelderblom WCA . Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver. Food Chem Toxicol . 2009;47(1):220–229. doi:10.1016/j.fct.2008.11.004 19041360
  • Bates SH , Jones RB , Bailey CJ . Insulin-like effect of pinitol. Br J Pharmacol . 2000;130(8):1944–1948. doi:10.1038/sj.bjp.0703523 10952686
  • Ojewole JAO . Analgesic, antiinflammatory and hypoglycemic effects of Sutherlandia frutescens R. BR. (variety incana E. MEY.) [Fabaceae] shoot aqueous extract. Methods Find Exp Clin Pharmacol . 2004;26(6):409–416.15349136
  • Kawano A , Nakamura H , Hata S-I , Minakawa M , Miura Y , Yagasaki K . Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine . 2009;16(5):437–443. doi:10.1016/j.phymed.2008.11.009 19188054
  • Johnson R , Beer D , Dludla PV , Ferreira D , Muller CJF , Joubert E . Aspalathin from rooibos (Aspalathus linearis): a bioactive C -glucosyl dihydrochalcone with potential to target the metabolic syndrome. Planta Med . 2018;84(9–10):568–583. doi:10.1055/s-0044-100622 29388183
  • Kamakura R , Son MJ , de beer D , Joubert E , Miura Y , Yagasaki K . Antidiabetic effect of green rooibos (Aspalathus linearis) extract in cultured cells and type 2 diabetic model KK-Ay mice. Cytotechnology . 2015;67(4):699–710. doi:10.1007/s10616-014-9816-y 25410530
  • Mazibuko SE , Muller CJF , Joubert E , et al. Amelioration of palmitate-induced insulin resistance in C2C12 muscle cells by rooibos (Aspalathus linearis). Phytomedicine . 2013;20(10):813–819. doi:10.1016/j.phymed.2013.03.018 23639187
  • Mazibuko SE , Joubert E , Johnson R , Louw J , Opoku AR , Muller CJF . Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol Nutr Food Res . 2015;59(11):2199–2208. doi:10.1002/mnfr.201500258 26310822
  • Mikami N , Tsujimura J , Sato A , et al. Green rooibos extract from Aspalathus linearis, and its component, aspalathin, suppress elevation of blood glucose levels in mice and inhibit α-amylase and α-glucosidase activities in vitro. Food Sci Technol Res . 2015;21(2):231–240. doi:10.3136/fstr.21.231
  • Muller CJF , Joubert E , De Beer D , et al. Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine . 2012;20(1):32–39. doi:10.1016/j.phymed.2012.09.010 23083813
  • Muller CJ , Joubert E , Gabuza K , De Beer D , Fey SJ , Louw J . Assessment of the antidiabetic potential of an aqueous extract of honeybush (Cyclopia intermedia) in streptozotocin and obese insulin resistant wistar rats. In: Phytochemicals - Bioactivities and Impact on Health ; 2011:313–331. doi:10.5772/28574
  • Wang HL , Li CY , Zhang B , et al. Mangiferin facilitates islet regeneration and β-cell proliferation through upregulation of cell cycle and β-cell regeneration regulators. Int J Mol Sci . 2014;15(5):9016–9035. doi:10.3390/ijms15059016 24853132
  • Saleh S , El-Maraghy N , Reda E , Barakat W . Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by mangiferin: role of adiponectin and TNF-α. An Acad Bras Cienc . 2014;86(4):1935–1947. doi:10.1590/0001-3765201420140212 25590730
  • Jung UJ , Lee M-K , Jeong K-S , Choi M-S . The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J Nutr . 2004;134(10):2499–2503. doi:10.1093/jn/134.10.2499 15465737
  • Akiyama S , Katsumata SI , Suzuki K , Ishimi Y , Wu J , Uehara M . Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J Clin Biochem Nutr . 2009;46(1):87–92. doi:10.3164/jcbn.09-82 20104270
  • Chadwick WA , Roux S , van de Venter M , Louw J , Oelofsen W . Anti-diabetic effects of Sutherlandia frutescens in wistar rats fed a diabetogenic diet. J Ethnopharmacol . 2007;109(1):121–127. doi:10.1016/j.jep.2006.07.012 16939705
  • M J , C. K T , R S , Vdv M , Dealtry G , Effect of Sutherlandia frutescens on the lipid metabolism in an insulin resistant rat model and 3T3-L1 adipocytes. Phytother Res . 2012;26(12):1830–1837. doi:10.1002/ptr.4653 22422585
  • Williams S , Roux S , Koekemoer T , Van De Venter M , Dealtry G . Sutherlandia frutescens prevents changes in diabetes-related gene expression in a fructose-induced insulin resistant cell model. J Ethnopharmacol . 2013;146(2):482–489. doi:10.1016/j.jep.2013.01.008 23376105
  • Marnewick JL , Rautenbach F , Venter I , et al. Effects of rooibos (Aspalathus linearis) on oxidative stress and biochemical parameters in adults at risk for cardiovascular disease. J Ethnopharmacol . 2011;133(1):46–52. doi:10.1016/j.jep.2010.08.061 20833235
  • Omolaoye T , Windvogel S , Du Plessis S . Testicular oxidative stress and apoptosis status in streptozotocin-induced diabetic rats after treatment with rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia), and Sutherlandia (Lessertia frutescens) infusions. Asian Pacific J Reprod . 2021;10(1):11–20. doi:10.4103/2305-0500.306432
  • Du Toit J , Joubert E . Optimization of the fermentation parameters of honeybush tea (Cyclopia). J Food Qual . 1999;22(3):241–256. doi:10.1111/j.1745-4557.1999.tb00555.x
  • Tobwala S , Fan W , Hines CJ , Folk WR , Ercal N . Antioxidant potential of Sutherlandia frutescens and its protective effects against oxidative stress in various cell cultures. BMC Complement Altern Med . 2014;14(1):1–11. doi:10.1186/1472-6882-14-271 24383621
  • Santos JS , Deolindo CTP , Esmerino LA , et al. Effects of time and extraction temperature on phenolic composition and functional properties of red rooibos (Aspalathus linearis). Food Res Int . 2016;89:476–487. doi:10.1016/j.foodres.2016.08.041 28460941
  • Arthur H , Joubert E , De Beer D , Malherbe CJ , Witthuhn RC . Phenylethanoid glycosides as major antioxidants in Lippia multiflora herbal infusion and their stability during steam pasteurisation of plant material. Food Chem . 2011;127(2):581–588. doi:10.1016/j.foodchem.2011.01.044 23140703
  • National Research Council. Guide for the Care and Use of Laboratory Animals . 8th edition; 2010.
  • Bradford MM . A rapid and sensitive microgram quantities of protein utilizing the principle of protein dye biding. Anal Biochem . 1976;72(1–2):248–254. doi:10.1016/0003-2697(76)90527-3 942051
  • Marais E , Genade S , Huisamen B , Strijdom JG , Moolman JA , Lochner A . Activation of p38 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol . 2001;33(4):769–778. doi:10.1006/jmcc.2001.1347 11273729
  • Chellan N , Joubert E , Strijdom H , Roux C , Louw J , Muller CJF . Aqueous extract of unfermented honeybush (cyclopia maculata) attenuates stz-induced diabetes and β-cell cytotoxicity. Planta Med . 2014;80(8–9):622–629. doi:10.1055/s-0034-1368457 24853761
  • Mazibuko-Mbeje SE , Dludla PV , Roux C , et al. Aspalathin-enriched green rooibos extract reduces hepatic insulin resistance by modulating PI3K/AKT and AMPK pathways. Int J Mol Sci . 2019;20(3):1–16. doi:10.3390/ijms20030633
  • Rees DA , Alcolado JC . Animal models of diabetes mellitus. Diabet Med . 2005;22(4):359–370. doi:10.1111/j.1464-5491.2005.01499.x 15787657
  • Son MJ , Minakawa M , Miura Y , Yagasaki K . Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice. Eur J Nutr . 2013;52(6):1607–1619. doi:10.1007/s00394-012-0466-6 23238530
  • North MS , Joubert E , de Beer D , de Kock K , Joubert ME . Effect of harvest date on growth, production and quality of honeybush (Cyclopia genistoides and C. subternata). South African J Bot . 2017;110:132–137. doi:10.1016/j.sajb.2016.08.002
  • Withers DJ , Burks DJ , Towery HH , Altamuro SL , Flint CL , White MF . Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nat Genet . 1999;23(1):32–40. doi:10.1038/12631 10471495
  • Kokk K , Veräjänkorva E , Wu XK , Tapfer H , Põldoja E , Pöllänen P . Immunohistochemical detection of glucose transporters class I subfamily in the mouse, rat and human testis. Medicina (Kaunas) . 2004;40(2):156–160.
  • Schürmann A , Axer H , Scheepers A , Doege H , Joost HG . The glucose transport facilitator GLUT8 is predominantly associated with the acrosomal region of mature spermatozoa. Cell Tissue Res . 2002;307(2):237–242. doi:10.1007/s00441-001-0499-2 11845330
  • Burant CF , Davidson NO . GLUT3 glucose transporter isoform in rat testis: localization, effect of diabetes mellitus, and comparison to human testis. Am J Physiol Regul Integr Comp Physiol . 1994;267(6):1488–1495. doi:10.1152/ajpregu.1994.267.6.r1488
  • Verma R , Haldar C . Photoperiodic modulation of thyroid hormone receptor (TR-α), deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in testis of adult golden hamster, Mesocricetus auratus. J Photochem Photobiol B Biol . 2016;165:351–358. doi:10.1016/j.jphotobiol.2016.10.036
  • Lampiao F . Insulin stimulates glut8 expression in human spermatozoa. J Biosci Tech . 2010;1(2):90–93.
  • Araki E , Lipes MA , Patti ME , et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature . 1994;372(6502):186–190. doi:10.1038/372186a0 7526222
  • Withers DJ , Gutierrez JS , Towery H , et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature . 1998;391(6670):900–904. doi:10.1038/36116 9495343
  • Vikram A , Tripathi DN , Ramarao P , Jena GB . Intervention of d-glucose ameliorates the toxicity of streptozotocin in accessory sex organs of rat. Toxicol Appl Pharmacol . 2008;226(1):84–93. doi:10.1016/j.taap.2007.09.006 17950394
  • Saltiel AR , Kahn CR . Insulin signalling and the regulation of glucose and lipid metabolism.. Insight Rev Artic . 2001;414(December):799–806.
  • Opuwari CS , Monsees TK . Reduced testosterone production in TM3 Leydig cells treated with Aspalathus linearis (Rooibos) or Camellia sinensis (tea). Andrologia . 2015;47(1):52–58. doi:10.1111/and.12221 24387279
  • Muruganandan S , Gupta S , Kataria M , Lal J , Gupta PK . Mangiferin protects the streptozotocin-induced oxidative damage to cardiac and renal tissues in rats. Toxicology . 2002;176(3):165–173. doi:10.1016/S0300-483X(02)00069-0 12093613
  • Ichiki H , Miura T , Kubo M , et al. New antidiabetic compounds, mangiferin and its glucoside. Biol Pharm Bull . 1998;21(12):1389–1390. doi:10.1248/bpb.21.1389 9881663
  • Dang NT , Mukai R , Yoshida KI , Ashida H . D-pinitol and myo-inositol stimulate translocation of glucose transporter 4 in skeletal muscle of C57BL/6 mice. Biosci Biotechnol Biochem . 2010;74(5):1062–1067. doi:10.1271/bbb.90963 20460718