174
Views
4
CrossRef citations to date
0
Altmetric
Original Research

ShengMai-San Attenuates Cardiac Remodeling in Diabetic Rats by Inhibiting NOX-Mediated Oxidative Stress

, , , , , , & show all
Pages 647-657 | Published online: 11 Feb 2021

References

  • Cho NH , Shaw JE , Karuranga S , et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract . 2018;138:271–281. doi:10.1016/j.diabres.2018.02.023 29496507
  • Gregg EW , Sattar N , Ali MK . The changing face of diabetes complications. Lancet Diabetes Endocrinol . 2016;4(6):537–547. doi:10.1016/S2213-8587(16)30010-9 27156051
  • Liu Q , Wang S , Cai L . Diabetic cardiomyopathy and its mechanisms: role of oxidative stress and damage. J Diabetes Investig . 2014;5(6):623–634. doi:10.1111/jdi.12250
  • Zaveri MP , Perry JC , Schuetz TM , Memon MD , Faiz S , Cancarevic I . Diabetic cardiomyopathy as a clinical entity: is it a myth? Cureus . 2020;12(10):e11100.33240696
  • Kaludercic N , Di Lisa F . Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med . 2020;7:12. doi:10.3389/fcvm.2020.00012 32133373
  • Ni Q , Wang J , Li EQ , et al. Study on the protective effect of shengmai san (see text) on the myocardium in the type 2 diabetic cardiomyopathy model rat. J Tradit Chin Med . 2011;31(3):209–219. doi:10.1016/S0254-6272(11)60044-7 22003531
  • Zhao J , Cao TT , Tian J , et al. Shengmai san ameliorates myocardial dysfunction and fibrosis in diabetic db/db mice. Evid Based Complement Alternat Med . 2016;2016:4621235. doi:10.1155/2016/4621235 27200101
  • Tian J , Tang W , Xu M , et al. Shengmai san alleviates diabetic cardiomyopathy through improvement of mitochondrial lipid metabolic disorder. Cell Physiol Biochem . 2018;50(5):1726–1739. doi:10.1159/000494791 30384366
  • Zhang SY , Yang KL , Long ZY , Li WQ , Huang HY . Use of a systematic pharmacological methodology to explore the mechanism of shengmai powder in treating diabetic cardiomyopathy. Med Sci Monit . 2020;26:e919029.32023237
  • Jin L , Zhang J , Deng Z , et al. Mesenchymal stem cells ameliorate myocardial fibrosis in diabetic cardiomyopathy via the secretion of prostaglandin E2. Stem Cell Res Ther . 2020;11(1):122. doi:10.1186/s13287-020-01633-7 32183879
  • Cai L , Kang YJ . Cell death and diabetic cardiomyopathy. Cardiovasc Toxicol . 2003;3(3):219–228. doi:10.1385/CT:3:3:219 14555788
  • Engel D , Peshock R , Armstong RC , Sivasubramanian N , Mann DL . Cardiac myocyte apoptosis provokes adverse cardiac remodeling in transgenic mice with targeted TNF overexpression. Am J Physiol Heart Circ Physiol . 2004;287(3):H1303–11. doi:10.1152/ajpheart.00053.2004 15317679
  • Yao Q , Ke ZQ , Guo S , et al. Curcumin protects against diabetic cardiomyopathy by promoting autophagy and alleviating apoptosis. J Mol Cell Cardiol . 2018;124:26–34. doi:10.1016/j.yjmcc.2018.10.004 30292723
  • Yu W , Zha W , Guo S , Cheng H , Wu J , Liu C . Flos Puerariae extract prevents myocardial apoptosis via attenuation oxidative stress in streptozotocin-induced diabetic mice. PLoS One . 2014;9(5):e98044. doi:10.1371/journal.pone.0098044 24865768
  • Liu X , Tan W , Yang F , et al. Shengmai injection reduces apoptosis and enhances angiogenesis after myocardial ischaemia and reperfusion injury in rats. Biomed Pharmacother . 2018;104:629–636. doi:10.1016/j.biopha.2018.04.180 29803176
  • Yan B , Ren J , Zhang Q , et al. Antioxidative effects of natural products on diabetic cardiomyopathy. J Diabetes Res . 2017;2017:2070178. doi:10.1155/2017/2070178 29181412
  • Lorenzo O , Ramirez E , Picatoste B , Egido J , Tunon J . Alteration of energy substrates and ROS production in diabetic cardiomyopathy. Mediators Inflamm . 2013;2013:461967. doi:10.1155/2013/461967 24288443
  • Tan Y , Zhang Z , Zheng C , Wintergerst KA , Keller BB , Cai L . Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol . 2020;17(9):585–607.32080423
  • Ma W , Guo W , Shang F , et al. Bakuchiol alleviates hyperglycemia-induced diabetic cardiomyopathy by reducing myocardial oxidative stress via activating the SIRT1/Nrf2 signaling pathway. Oxid Med Cell Longev . 2020;2020:3732718. doi:10.1155/2020/3732718 33062139
  • D’Oria R , Schipani R , Leonardini A , et al. The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxid Med Cell Longev . 2020;2020:5732956. doi:10.1155/2020/5732956 32509147
  • Koju N , Taleb A , Zhou J , et al. Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother . 2019;111:1478–1498. doi:10.1016/j.biopha.2018.11.128 30841463
  • Sedeek M , Montezano AC , Hebert RL , et al. Oxidative stress, Nox isoforms and complications of diabetes–potential targets for novel therapies. J Cardiovasc Transl Res . 2012;5(4):509–518. doi:10.1007/s12265-012-9387-2 22711281
  • Brandes RP , Weissmann N , Schroder K . Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med . 2014;76:208–226. doi:10.1016/j.freeradbiomed.2014.07.046 25157786
  • Xiao S , Zang J , Pei Y , et al. Activation of mitochondrial orf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize. Mol Plant . 2020;13(9):1270–1283. doi:10.1016/j.molp.2020.07.002 32629120
  • Hou Y , Ouyang X , Wan R , Cheng H , Mattson MP , Cheng A . Mitochondrial superoxide production negatively regulates neural progenitor proliferation and cerebral cortical development. Stem Cells . 2012;30(11):2535–2547. doi:10.1002/stem.1213 22949407
  • Laddha AP , Kulkarni YA . NADPH oxidase: a membrane-bound enzyme and its inhibitors in diabetic complications. Eur J Pharmacol . 2020;881:173206. doi:10.1016/j.ejphar.2020.173206 32442539
  • Hansen SS , Aasum E , Hafstad AD . The role of NADPH oxidases in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis . 2018;1864(5):1908–1913. doi:10.1016/j.bbadis.2017.07.025 28754449
  • Xu TZ , Shen XY , Sun LL , et al. Ginsenoside Rg1 protects against H2O2induced neuronal damage due to inhibition of the NLRP1 inflammasome signalling pathway in hippocampal neurons in vitro. Int J Mol Med . 2019;43(2):717–726. doi:10.3892/ijmm.2018.4005 30535505
  • Lv ZM , Liu Y , Zhang PJ , et al. The role of AMPKalpha in high-glucose-induced dysfunction of cultured rat mesangial cells. Ren Fail . 2012;34(5):616–621. doi:10.3109/0886022X.2012.668491 22452514
  • Li T , Mu N , Yin Y , Yu L , Ma H . Targeting AMP-activated protein kinase in aging-related cardiovascular diseases. Aging Dis . 2020;11(4):967–977. doi:10.14336/AD.2019.0901 32765957
  • Song P , Zou MH . Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radic Biol Med . 2012;52(9):1607–1619. doi:10.1016/j.freeradbiomed.2012.01.025 22357101
  • Ceolotto G , Gallo A , Papparella I , et al. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol . 2007;27(12):2627–2633. doi:10.1161/ATVBAHA.107.155762 17916771