244
Views
13
CrossRef citations to date
0
Altmetric
Original Research

PARP-1 and SIRT-1 are Interacted in Diabetic Nephropathy by Activating AMPK/PGC-1α Signaling Pathway

, , , , ORCID Icon, & ORCID Icon show all
Pages 355-366 | Published online: 25 Jan 2021

References

  • Breyer MD , Susztak K . The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov . 2016;15(8):568–588.27230798
  • Papadopoulou-Marketou N , Kanaka-Gantenbein C , Marketos N , Chrousos GP , Papassotiriou I . Biomarkers of diabetic nephropathy: a 2017 update. Crit Rev Clin Lab Sci . 2017;54(5):326–342. doi:10.1080/10408363.2017.1377682 28956668
  • Gheith O , Farouk N , Nampoory N , Halim MA , Al-Otaibi T . Diabetic kidney disease: world wide difference of prevalence and risk factors. J Nephropharmacol . 2016;5(1):49–56.28197499
  • Liu HF , Liu H , Lv LL , et al. CCN3 suppresses TGF-beta1-induced extracellular matrix accumulation in human mesangial cells in vitro. Acta Pharmacol Sin . 2018;39(2):222–229. doi:10.1038/aps.2017.87 28858296
  • Abboud HE . Mesangial cell biology. Exp Cell Res . 2012;318(9):979–985. doi:10.1016/j.yexcr.2012.02.025 22414873
  • Liu J , Wang C , Liu F , Lu Y , Cheng J . Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy. Anal Bioanal Chem . 2015;407(9):2569–2579. doi:10.1007/s00216-015-8481-0 25636229
  • Wada J , Makino H . Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) . 2013;124(3):139–152. doi:10.1042/CS20120198 23075333
  • Sifuentes-Franco S , Padilla-Tejeda DE , Carrillo-Ibarra S , Miranda-Diaz AG . Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol . 2018;2018:1875870. doi:10.1155/2018/1875870 29808088
  • Kitada M , Kume S , Takeda-Watanabe A , Kanasaki K , Koya D . Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond) . 2013;124(3):153–164. doi:10.1042/CS20120190 23075334
  • Hao CM , Haase VH . Sirtuins and their relevance to the kidney. J Am Soc Nephrol . 2010;21(10):1620–1627. doi:10.1681/ASN.2010010046 20595677
  • Jagtap P , Szabo C . Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov . 2005;4(5):421–440. doi:10.1038/nrd1718 15864271
  • Hassa PO , Hottiger MO . The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci . 2008;13(13):3046–3082. doi:10.2741/2909 17981777
  • Bai P . Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance. Mol Cell . 2015;58(6):947–958. doi:10.1016/j.molcel.2015.01.034 26091343
  • Lu P , Hogan-Cann AD , Kamboj A , et al. Poly(ADP-ribose) polymerase-1 inhibits mitochondrial respiration by suppressing PGC-1alpha activity in neurons. Neuropharmacology . 2019;160:107755. doi:10.1016/j.neuropharm.2019.107755 31487495
  • Farivar AS , McCourtie AS , MacKinnon-Patterson BC , et al. Poly (ADP) ribose polymerase inhibition improves rat cardiac allograft survival. Ann Thorac Surg . 2005;80(3):950–956. doi:10.1016/j.athoracsur.2005.02.035 16122462
  • Mormile R , Vittori G , De Michele M , Squarcia U , Quaini F . Is a deceptive role of IGF-1 in Sirt1-PARP1 interactions the primary step of postnatal regression of hypertrophic cardiomyopathy in infants of diabetic mothers? Int J Cardiol . 2012;154(1):87–88. doi:10.1016/j.ijcard.2011.10.072 22062899
  • Eros K , Magyar K , Deres L , et al. Chronic PARP-1 inhibition reduces carotid vessel remodeling and oxidative damage of the dorsal hippocampus in spontaneously hypertensive rats. PLoS One . 2017;12(3):e0174401. doi:10.1371/journal.pone.0174401 28339485
  • Li X , Ling Y , Cao Z . Targeting intestinal epithelial cell-programmed necrosis alleviates tissue injury after intestinal ischemia/reperfusion in rats. J Surg Res . 2018;225:108–117. doi:10.1016/j.jss.2018.01.007 29605020
  • Meng YY , Wu CW , Yu B , Li H , Chen M , Qi GX . PARP-1 involvement in autophagy and their roles in apoptosis of vascular smooth muscle cells under oxidative stress. Folia Biol (Praha) . 2018;64(3):103–111.30394268
  • Mohamed JS , Wilson JC , Myers MJ , Sisson KJ , Alway SE . Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism. Aging (Albany NY) . 2014;6(10):820–834. doi:10.18632/aging.100696 25361036
  • Del Moral RM , Gomez-Morales M , Hernandez-Cortes P , et al. PARP inhibition attenuates histopathological lesion in ischemia/reperfusion renal mouse model after cold prolonged ischemia. ScientificWorldJournal . 2013;2013:486574. doi:10.1155/2013/486574 24319370
  • Minchenko AG , Stevens MJ , White L , et al. Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly(ADP-ribose) polymerase activation. FASEB J . 2003;17(11):1514–1516. doi:10.1096/fj.03-0013fje 12824290
  • Szabo C , Biser A , Benko R , Bottinger E , Susztak K . Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes . 2006;55(11):3004–3012. doi:10.2337/db06-0147 17065336
  • Chow BSM , Allen TJ . Mouse models for studying diabetic nephropathy. Curr Protoc Mouse Biol . 2015;5(2):85–94. doi:10.1002/9780470942390.mo140192 26069079
  • Peixoto EB , Papadimitriou A , Lopes de Faria JM , Lopes de Faria JB . Tempol reduces podocyte apoptosis via PARP signaling pathway in experimental diabetes mellitus. Nephron Exp Nephrol . 2012;120(2):e81–90. doi:10.1159/000337364 22555049
  • Guarente L , Franklin H . Epstein lecture: sirtuins, aging, and medicine. N Engl J Med . 2011;364(23):2235–2244. doi:10.1056/NEJMra1100831 21651395
  • Vaziri H , Dessain SK , Ng Eaton E , et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell . 2001;107(2):149–159. doi:10.1016/S0092-8674(01)00527-X 11672523
  • Gagarina V , Gabay O , Dvir-Ginzberg M , et al. SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. Arthritis Rheum . 2010;62(5):1383–1392. doi:10.1002/art.27369 20131294
  • Zhang Z , Lin J , Nisar M , et al. The Sirt1/P53 axis in diabetic intervertebral disc degeneration pathogenesis and therapeutics. Oxid Med Cell Longev . 2019;2019:7959573.31583043
  • Daenthanasanmak A , Iamsawat S , Chakraborty P , et al. Targeting Sirt-1 controls GVHD by inhibiting T-cell allo-response and promoting treg stability in mice. Blood . 2019;133(3):266–279. doi:10.1182/blood-2018-07-863233 30514750
  • Wang Y , Luo W , Wang Y . PARP-1 and its associated nucleases in DNA damage response. DNA Repair (Amst) . 2019;81:102651. doi:10.1016/j.dnarep.2019.102651 31302005
  • Wang W , Sun W , Cheng Y , Xu Z , Cai L . Role of sirtuin-1 in diabetic nephropathy. J Mol Med (Berl) . 2019;97(3):291–309. doi:10.1007/s00109-019-01743-7 30707256
  • de Kreutzenberg SV , Ceolotto G , Papparella I , et al. Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes . 2010;59(4):1006–1015. doi:10.2337/db09-1187 20068143
  • Chen Z , Gong L , Zhang P , et al. Epigenetic down-regulation of sirt 1 via DNA methylation and oxidative stress signaling contributes to the gestational diabetes mellitus-induced fetal programming of heart ischemia-sensitive phenotype in late life. Int J Biol Sci . 2019;15(6):1240–1251. doi:10.7150/ijbs.33044 31223283
  • Papadimitriou A , Silva KC , Peixoto EB , Borges CM , Lopes de Faria JM , Lopes de Faria JB . Theobromine increases NAD+ /Sirt-1 activity and protects the kidney under diabetic conditions. Am J Physiol Renal Physiol . 2015;308(3):F209–225. doi:10.1152/ajprenal.00252.2014 25411384
  • Kitada M , Kume S , Imaizumi N , Koya D . Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes . 2011;60(2):634–643. doi:10.2337/db10-0386 21270273
  • Karbasforooshan H , Karimi G . The role of SIRT1 in diabetic cardiomyopathy. Biomed Pharmacother . 2017;90:386–392. doi:10.1016/j.biopha.2017.03.056 28380414
  • Wang W , Sun W , Cheng Y , Xu Z , Cai L . Management of diabetic nephropathy: the role of sirtuin-1. Future Med Chem . 2019;11(17):2241–2245. doi:10.4155/fmc-2019-0153 31581918
  • Lu P , Kamboj A , Gibson SB , Anderson CM . Poly(ADP-ribose) polymerase-1 causes mitochondrial damage and neuron death mediated by Bnip3. J Neurosci . 2014;34(48):15975–15987. doi:10.1523/JNEUROSCI.2499-14.2014 25429139
  • Waldman M , Nudelman V , Shainberg A , et al. PARP-1 inhibition protects the diabetic heart through activation of SIRT1-PGC-1alpha axis. Exp Cell Res . 2018;373(1–2):112–118. doi:10.1016/j.yexcr.2018.10.003 30359575
  • Eo H , Park JE , Jeon YJ , Lim Y . Ameliorative effect of ecklonia cava polyphenol extract on renal inflammation associated with aberrant energy metabolism and oxidative stress in high fat diet-induced obese mice. J Agric Food Chem . 2017;65(19):3811–3818. doi:10.1021/acs.jafc.7b00357 28459555
  • Szrejder M , Piwkowska A . AMPK signalling: implications for podocyte biology in diabetic nephropathy. Biol Cell . 2019;111(5):109–120. doi:10.1111/boc.201800077 30702162
  • Ma T , Zheng Z , Guo H , et al. 4-O-methylhonokiol ameliorates type 2 diabetes-induced nephropathy in mice likely by activation of AMPK-mediated fatty acid oxidation and Nrf2-mediated anti-oxidative stress. Toxicol Appl Pharmacol . 2019;370:93–105. doi:10.1016/j.taap.2019.03.007 30876865
  • Hong YA , Lim JH , Kim MY , et al. Extracellular superoxide dismutase attenuates renal oxidative stress through the activation of adenosine monophosphate-activated protein kinase in diabetic nephropathy. Antioxid Redox Signal . 2018;28(17):1543–1561. doi:10.1089/ars.2017.7207 29020797
  • Liao Z , Zhang J , Wang J , et al. The anti-nephritic activity of a polysaccharide from okra (Abelmoschus esculentus (L.) Moench) via modulation of AMPK-Sirt1-PGC-1alpha signaling axis mediated anti-oxidative in type 2 diabetes model mice. Int J Biol Macromol . 2019;140:568–576. doi:10.1016/j.ijbiomac.2019.08.149 31442509
  • Wang X , Gao Y , Tian N , et al. Astragaloside IV represses high glucose-induced mesangial cells activation by enhancing autophagy via SIRT1 deacetylation of NF-kappaB p65 subunit. Drug Des Devel Ther . 2018;12:2971–2980. doi:10.2147/DDDT.S174058
  • Lei P , Jiang Z , Zhu H , Li X , Su N , Yu X . Poly(ADP-ribose) polymerase-1 in high glucose-induced epithelial-mesenchymal transition during peritoneal fibrosis. Int J Mol Med . 2012;29(3):472–478. doi:10.3892/ijmm.2011.859 22159350
  • Fakouri NB , Durhuus JA , Regnell CE , et al. Rev1 contributes to proper mitochondrial function via the PARP-NAD(+)-SIRT1-PGC1alpha axis. Sci Rep . 2017;7(1):12480. doi:10.1038/s41598-017-12662-3 28970491
  • Jiang Y , Zhang Z , Cha L , et al. Resveratrol plays a protective role against premature ovarian failure and prompts female germline stem cell survival. Int J Mol Sci . 2019;20(14):3605. doi:10.3390/ijms20143605
  • Fan C , Ma Q , Xu M , et al. Ginsenoside Rb1 attenuates high glucose-induced oxidative injury via the NAD-PARP-SIRT axis in rat retinal capillary endothelial cells. Int J Mol Sci . 2019;20(19):4936. doi:10.3390/ijms20194936
  • Horvath EM , Zsengeller ZK , Szabo C . Quantification of PARP activity in human tissues: ex vivo assays in blood cells and immunohistochemistry in human biopsies. Methods Mol Biol . 2011;780:267–275.21870266
  • Horvath EM , Zsengeller ZK , Szabo C . Quantification of PARP activity in human tissues: ex vivo assays in blood cells and immunohistochemistry in human biopsies. Methods Mol Biol . 2017;1608:19–26.28695500
  • Pascua-Maestro R , Corraliza-Gomez M , Diez-Hermano S , Perez-Segurado C , Ganfornina MD , Sanchez D . The MTT-formazan assay: complementary technical approaches and in vivo validation in drosophila larvae. Acta Histochem . 2018;120(3):179–186. doi:10.1016/j.acthis.2018.01.006 29395318
  • Ciccarone F , Zampieri M , Caiafa P . PARP1 orchestrates epigenetic events setting up chromatin domains. Semin Cell Dev Biol . 2017;63:123–134. doi:10.1016/j.semcdb.2016.11.010 27908606
  • Duarte DA , Rosales MA , Papadimitriou A , et al. Polyphenol-enriched cocoa protects the diabetic retina from glial reaction through the sirtuin pathway. J Nutr Biochem . 2015;26(1):64–74. doi:10.1016/j.jnutbio.2014.09.003 25448608
  • Shemesh II , Rozen-Zvi B , Kalechman Y , Gafter U , Sredni B . AS101 prevents diabetic nephropathy progression and mesangial cell dysfunction: regulation of the AKT downstream pathway. PLoS One . 2014;9(12):e114287. doi:10.1371/journal.pone.0114287 25474550
  • Shang G , Gao P , Zhao Z , et al. 3,5-Diiodo-l-thyronine ameliorates diabetic nephropathy in streptozotocin-induced diabetic rats. Biochim Biophys Acta . 2013;1832(5):674–684. doi:10.1016/j.bbadis.2013.01.023 23416120
  • Huang XZ , Wen D , Zhang M , et al. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-beta/Smad3 pathway. J Cell Biochem . 2014;115(5):996–1005. doi:10.1002/jcb.24748 24356887
  • Chen Y , Wang N , Yuan Q , et al. The protective effect of fluorofenidone against cyclosporine a-induced nephrotoxicity. Kidney Blood Press Res . 2019;44(4):656–668. doi:10.1159/000500924 31387101
  • Xu B , Chiu J , Feng B , Chen S , Chakrabarti S . PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes Metab Res Rev . 2008;24(5):404–412. doi:10.1002/dmrr.842 18351623
  • Rajamohan SB , Pillai VB , Gupta M , et al. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol . 2009;29(15):4116–4129. doi:10.1128/MCB.00121-09 19470756