146
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Effects of Curcumin on High Glucose-Induced Epithelial-to-Mesenchymal Transition in Renal Tubular Epithelial Cells Through the TLR4-NF-κB Signaling Pathway

, , , , , & ORCID Icon show all
Pages 929-940 | Published online: 02 Mar 2021

References

  • Adler S , Nast C , Artishevsky A . Diabetic nephropathy: pathogenesis and treatment. Annu Rev Med . 1993;44:303–315. doi:10.1146/annurev.me.44.020193.001511.8476252
  • Najafian B , Kim Y , Crosson JT , Mauer M . Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J Am Soc Nephrol . 2003;14(4):908–917. doi:10.1097/01.asn.0000057854.32413.81.12660325
  • Russo LM , Sandoval RM , Campos SB , Molitoris BA , Comper WD , Brown D . Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol . 2009;20(3):489–494. doi:10.1681/ASN.2008050503.19118149
  • Katz A , Caramori ML , Sisson-Ross S , Groppoli T , Basgen JM , Mauer M . An increase in the cell component of the cortical interstitium antedates interstitial fibrosis in type 1 diabetic patients. Kidney Int . 2002;61(6):2058–2066. doi:10.1046/j.1523-1755.2002.00370.x.12028446
  • Thomas MC , Brownlee M , Susztak K , et al. Diabetic kidney disease. Nat Rev Dis Primers . 2015;1:15018. doi:10.1038/nrdp.2015.18.27188921
  • Bohle A , Wehrmann M , Bogenschütz O , Batz C , Müller CA , Müller GA . The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol Res Pract . 1991;187(2–3):251–259. doi:10.1016/s0344-0338(11)80780-6.2068008
  • Forbes JM , Thorburn DR . Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol . 2018;14(5):291–312. doi:10.1038/nrneph.2018.9.29456246
  • Wada J , Makino H . Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol . 2016;12(1):13–26. doi:10.1038/nrneph.2015.175.26568190
  • Wang YH , Zhang YG . Kidney and innate immunity. Immunol Lett . 2017;183:73–78. doi:10.1016/j.imlet.2017.01.011.28143791
  • Garibotto G , Carta A , Picciotto D , Viazzi F , Verzola D . Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol . 2017;30(6):719–727. doi:10.1007/s40620-017-0432-8.28933050
  • Medzhitov R , Preston-Hurlburt P , Janeway CAJ . A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature . 1997;388(6640):394–397. doi:10.1038/41131.9237759
  • Rock FL , Hardiman G , Timans JC , Kastelein RA , Bazan JF . A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A . 1998;95(2):588–593. doi:10.1073/pnas.95.2.588.9435236
  • Wolfs TG , Buurman WA , van Schadewijk A , de Vries B , Daemen MA , Hiemstra PS . In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells: IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J Immunol . 2002;168(3):1286–1293. doi:10.4049/jimmunol.168.3.1286.11801667
  • Panchapakesan U , Pollock C . The role of toll-like receptors in diabetic kidney disease. Curr Opin Nephrol Hypertens . 2018;27(1):30–34. doi:10.1097/MNH.0000000000000377.29059081
  • McLaughlin CN , Perry-Richardson JJ , Coutinho-Budd JC , Broihier HT . Dying Neurons Utilize Innate Immune Signaling to Prime Glia for Phagocytosis during Development. Dev Cell . 2019;48(4):506–522. doi:10.1016/j.devcel.2018.12.019.30745142
  • Verzola D , Cappuccino L , D’Amato E , et al. Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria. Kidney Int . 2014;86(6):1229–1243. doi:10.1038/ki.2014.116.24786705
  • Zhang X , Sun L , Fan Y , et al. Effects of curcumine on expressions of toll-like receptor 2 and 6 in rat peritoneum during acute peritonitis. Chin J Nephrology Dialysis Transplant . 2012;21(3):244–248.
  • Zhang X , Ma J , Wu Y , et al. TNF-α Expression in the Peritoneum of Curcumin e Pretreated Acute Peritonitis Rat. J China Med Univ . 2009;38(10):749–750.
  • Kant V , Gopal A , Pathak NN , Kumar P , Tandan SK , Kumar D . Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol . 2014;20(2):322–330. doi:10.1016/j.intimp.2014.03.009.24675438
  • Yu Y , Sun J , Wang R , Liu J , Wang P , Wang C . Curcumin Management of Myocardial Fibrosis and its Mechanisms of Action: a Review. Am J Chin Med . 2019;47(8):1675–1710. doi:10.1142/S0192415X19500861.31786946
  • Mbese Z , Khwaza V , Aderibigbe BA . Curcumin and Its Derivatives as Potential Therapeutic Agents in Prostate, Colon and Breast Cancers. Molecules . 2019;24(23):4386. doi:10.3390/molecules24234386.
  • Lin K , Chen H , Chen X , Qian J , Huang S , Huang W . Efficacy of Curcumin on Aortic Atherosclerosis: a Systematic Review and Meta-Analysis in Mouse Studies and Insights into Possible Mechanisms. Oxid Med Cell Longev . 2020;2020:1520747. doi:10.1155/2020/1520747.31998433
  • Parsamanesh N , Moossavi M , Bahrami A , Butler AE , Sahebkar A . Therapeutic potential of curcumin in diabetic complications. Pharmacol Res . 2018;136:181–193. doi:10.1016/j.phrs.2018.09.012.30219581
  • Zeng LF , Xiao Y , Sun LA . Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy. Adv Exp Med Biol . 2019;1165:49–79. doi:10.1007/978-981-13-8871-2_4.31399961
  • Sun X , Liu Y , Li C , et al. Recent Advances of Curcumin in the Prevention and Treatment of Renal Fibrosis. Biomed Res Int . 2017;2017:2418671. doi:10.1155/2017/2418671.28546962
  • Chen Y , Lu Y , Lee RJ , Xiang G . Nano Encapsulated Curcumin: and Its Potential for Biomedical Applications. Int J Nanomedicine . 2020;15:3099–3120. doi:10.2147/IJN.S210320.32431504
  • Zhang X , Liang D , Guo L , et al. Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1. Mol Med Rep . 2015;12(1):1347–1355. doi:10.3892/mmr.2015.3556.25823828
  • Tang Y , Vater C , Jacobi A , Liebers C , Zou X , Stiehler M . Salidroside exerts angiogenic and cytoprotective effects on human bone marrow-derived endothelial progenitor cells via Akt/mTOR/p70S6K and MAPK signalling pathways. Br J Pharmacol . 2014;171(9):2440–2456. doi:10.1111/bph.12611.24471788
  • Akira S , Takeda K . Toll-like receptor signalling. Nat Rev Immunol . 2004;4(7):499–511. doi:10.1038/nri1391.15229469
  • Yuan S , Liu X , Zhu X , et al. The Role of TLR4 on PGC-1α-mediated oxidative stress in tubular cell in diabetic kidney disease. Oxid Med Cell Longev . 2018;2018:6296802. doi:10.1155/2018/6296802.29861832
  • Kalluri R , Neilson EG . Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest . 2003;112(12):1776–1784. doi:10.1172/JCI20530.14679171
  • Burns WC , Twigg SM , Forbes JM , et al. Connective tissue growth factor plays an important role in advanced glycation end product-induced tubular epithelial-to-mesenchymal transition: implications for diabetic renal disease. J Am Soc Nephrol . 2006;17(9):2484–2494. doi:10.1681/ASN.2006050525.16914537
  • Yang J , Liu Y . Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol . 2001;159(4):1465–1475. doi:10.1016/S0002-9440(10)62533-3.11583974
  • Liu Y . Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol . 2004;15(1):1–12. doi:10.1097/01.asn.0000106015.29070.e7.14694152
  • Chen H , Yang X , Lu K , et al. Inhibition of high glucose-induced inflammation and fibrosis by a novel curcumin derivative prevents renal and heart injury in diabetic mice. Toxicol Lett . 2017;278:48–58. doi:10.1016/j.toxlet.2017.07.212.28700904
  • Vanaie A , Shahidi S , Iraj B , et al. Curcumin as a major active component of turmeric attenuates proteinuria in patients with overt diabetic nephropathy. J Res Med Sci . 2019;24:77. doi:10.4103/jrms.JRMS_1055_18.31523263
  • Barnes PJ , Karin M . Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med . 1997;336(15):1066–1071. doi:10.1056/NEJM199704103361506.9091804
  • Flohé L , Brigelius-Flohé R , Saliou C , Traber MG , Packer L . Redox regulation of NF-kappa B activation. Free Radic Biol Med . 1997;22(6):1115–1126. doi:10.1016/s0891-5849(96)00501-1.9034250
  • Lin M , Tang SC . Toll-like receptors: sensing and reacting to diabetic injury in the kidney. Nephrol Dial Transplant . 2014;29(4):746–754. doi:10.1093/ndt/gft446.24203812
  • Lin M , Yiu WH , Li RX , et al. The TLR4 antagonist CRX-526 protects against advanced diabetic nephropathy. Kidney Int . 2013;83(5):887–900. doi:10.1038/ki.2013.11.23423259
  • Pulskens WP , Rampanelli E , Teske GJ , et al. TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol . 2010;21(8):1299–1308. doi:10.1681/ASN.2009070722.20595685
  • Ma J , Chadban SJ , Zhao CY , et al. TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy. PLoS One . 2014;9(5):e97985. doi:10.1371/journal.pone.0097985.24842252
  • Wang Z , Chen Z , Li B , et al. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways. Pharm Biol . 2020;58(1):828–837. doi:10.1080/13880209.2020.1809462.
  • Zhang L , Tao X , Fu Q , et al. Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways. Oncol Rep . 2019;42(5):1843–1855. doi:10.3892/or.2019.7278.31432177
  • Sun LN , Yang ZY , Lv SS , Liu XC , Guan GJ , Liu G . Curcumin prevents diabetic nephropathy against inflammatory response via reversing caveolin-1 Tyr14 phosphorylation influenced TLR4 activation. Int Immunopharmacol . 2014;23(1):236–246. doi:10.1016/j.intimp.2014.08.023.25196431
  • Rhyu DY , Yang Y , Ha H , et al. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol . 2005;16(3):667–675. doi:10.1681/ASN.2004050425.15677311
  • Lee HB , Yu MR , Yang Y , Jiang Z , Ha H . Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol . 2003;14(8 Suppl 3):S241–5. doi:10.1097/01.asn.0000077410.66390.0f.12874439
  • Werner E . GTPases and reactive oxygen species: switches for killing and signaling. J Cell Sci . 2004;117(Pt 2):143–153. doi:10.1242/jcs.00937.14676270
  • Al-Kafaji G , Golbahar J . High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. Biomed Res Int . 2013;2013:754946. doi:10.1155/2013/754946.23984405
  • Shen J , Liu L , Zhang F , Gu J , Pan G . LncRNA TapSAKI promotes inflammation injury in HK-2 cells and urine derived sepsis-induced kidney injury. J Pharm Pharmacol . 2019;71(5):839–848. doi:10.1111/jphp.13049.30666657
  • Farhangkhoee H , Khan ZA , Chen S , Chakrabarti S . Differential effects of curcumin on vasoactive factors in the diabetic rat heart. Nutr Metab . 2006;3:27. doi:10.1186/1743-7075-3-27.
  • Chiu J , Khan ZA , Farhangkhoee H , Chakrabarti S . Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-kappaB. Nutrition . 2009;25(9):964–972. doi:10.1016/j.nut.2008.12.007.19268536
  • Zeng C , Zhong P , Zhao Y , et al. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J Mol Cell Cardiol . 2015;79:1–12. doi:10.1016/j.yjmcc.2014.10.002.25444713