191
Views
1
CrossRef citations to date
0
Altmetric
Original Research

The β3 Adrenergic Receptor Agonist CL316243 Ameliorates the Metabolic Abnormalities of High-Fat Diet-Fed Rats by Activating AMPK/PGC-1α Signaling in Skeletal Muscle

, , , , ORCID Icon, , , & ORCID Icon show all
Pages 1233-1241 | Published online: 18 Mar 2021

References

  • Frontera WR , Ochala J . Skeletal muscle: a brief review of structure and function. Calcif Tissue Int . 2015;96(3):183–195. doi:10.1007/s00223-014-9915-y 25294644
  • Gan Z , Fu T , Kelly DP , Vega RB . Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res . 2018;28(10):969–980. doi:10.1038/s41422-018-0078-7 30108290
  • Garneau L , Aguer C . Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. Diabetes Metab . 2019;45(6):505–516. doi:10.1016/j.diabet.2019.02.006 30844447
  • Townsend LK , Brunetta BS , Mori MA . Mitochondria-associated ER membranes in glucose homeostasis and insulin resistance. Am J Physiol Endocrinol Metab . 2020;319(6):E1053–E1060. doi:10.1152/ajpendo.00271.2020 32985254
  • Cho J , Choi Y , Sajgalik P , et al. Exercise as a therapeutic strategy for sarcopenia in heart failure: insights into underlying mechanisms. Cells . 2020;9(10):E2284. doi:10.3390/cells9102284 33066240
  • Cleasby ME , Jamieson PM , Atherton PJ . Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol . 2016;229(2):R67–R81. doi:10.1530/JOE-15-0533 26931135
  • Sjøberg KA , Frøsig C , Kjøbsted R , et al. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes . 2017;66(6):1501–1510. doi:10.2337/db16-1327 28292969
  • Cartee GD . Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise. Am J Physiol Endocrinol Metab . 2015;309(12):E949–E959. doi:10.1152/ajpendo.00416.2015 26487009
  • Richter-Stretton GL , Fenning AS , Vella RK . Skeletal muscle - a bystander or influencer of metabolic syndrome? Diabetes Metab Syndr . 2020;14(5):867–875. doi:10.1016/j.dsx.2020.06.006 32562864
  • Ryall JG , Church JE , Lynch GS . Novel role for ß-adrenergic signalling in skeletal muscle growth, development and regeneration. Clin Exp Pharmacol Physiol . 2010;37(3):397–401. doi:10.1111/j.1440-1681.2009.05312.x 19793099
  • Koziczak-Holbro M , Rigel DF , Dumotier B , et al. Pharmacological characterization of a novel 5-hydroxybenzothiazolone-derived β 2-adrenoceptor agonist with functional selectivity for anabolic effects on skeletal muscle resulting in a wider cardiovascular safety window in preclinical studies. J Pharmacol Exp Ther . 2019;369(2):188–199. doi:10.1124/jpet.118.255307 30819762
  • Ryall JG , Plant DR , Gregorevic P , Sillence MN , Lynch GS . Beta 2-agonist administration reverses muscle wasting and improves muscle function in aged rats. J Physiol . 2004;555(Pt 1):175–188. doi:10.1113/jphysiol.2003.056770 14617677
  • Ito A , Ohnuki Y , Suita K , et al. Role of β-adrenergic signaling in masseter muscle. PLoS One . 2019;14(4):e0215539. doi:10.1371/journal.pone.0215539 30986276
  • Kim YS , Sainz RD , Molenaar P , Summers RJ . Characterization of β1- and β2-adrenoceptors in rat skeletal muscles. Biochem Pharmacol . 1991;42(9):1783–1789. doi:10.1016/0006-2952(91)90516-8 1681810
  • Evans BA , Papaioannou M , Bonazzi VR , Summers RJ . Expression of beta 3-adrenoceptor mRNA in rat tissues. Br J Pharmacol . 1996;117(1):210–216. doi:10.1111/j.1476-5381.1996.tb15176.x 8825365
  • Puzzo D , Raiteri R , Castaldo C , et al. CL316,243, a β3-adrenergic receptor agonist, induces muscle hypertrophy and increased strength. Sci Rep . 2016;5:37504. doi:10.1038/srep37504 27874066
  • Navegantes LC , Resano NM , Baviera AM , Migliorini RH , Kettelhut IC . CL 316,243, a selective beta3-adrenergic agonist, inhibits protein breakdown in rat skeletal muscle. Pflugers Arch . 2006;451(5):617–624. doi:10.1007/s00424-005-1496-1 16091956
  • Adams SH . Uncoupling protein homologs: emerging views of physiological function. J Nutr . 2000;130(4):711–714. doi:10.1093/jn/130.4.711 10736318
  • Busiello RA , Savarese S , Lombardi A . Mitochondrial uncoupling proteins and energy metabolism. Front Physiol . 2015;6:36. doi:10.3389/fphys.2015.00036 25713540
  • Choi CS , Fillmore JJ , Kim JK , et al. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. J Clin Invest . 2007;117(7):1995–2003. doi:10.1172/JCI13579 17571165
  • Nakamura Y , Nagase I , Asano A , et al. Beta 3-adrenergic agonist up-regulates uncoupling proteins 2 and 3 in skeletal muscle of the mouse. J Vet Med Sci . 2001;63(3):309–314. doi:10.1292/jvms.63.309 11307932
  • Nagase I , Yoshida T , Kumamoto K , et al. Expression of uncoupling protein in skeletal muscle and white fat of obese mice treated with thermogenic beta 3-adrenergic agonist. J Clin Invest . 1996;97(12):2898–2904. doi:10.1172/JCI118748 8675704
  • Li RM , Chen SQ , Zeng NX , et al. Browning of abdominal aorta perivascular adipose tissue inhibits adipose tissue inflammation. Metab Syndr Relat Disord . 2017;15(9):450–457. doi:10.1089/met.2017.0074 28934021
  • Chen SQ , Ding LN , Zeng NX , et al. Icariin induces irisin/FNDC5 expression in C2C12 cells via the AMPK pathway. Biomed Pharmacother . 2019;115:108930. doi:10.1016/j.biopha.2019.108930 31055234
  • Kelley DE , He J , Menshikova EV , Ritov VB . Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes . 2002;51(10):2944–2950. doi:10.2337/diabetes.51.10.2944 12351431
  • Ritov VB , Menshikova EV , Jing H , Ferrell RE , Goodpaster BH , Kelley DE . Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes . 2005;54(1):8–14. doi:10.2337/diabetes.54.1.8 15616005
  • Puigserver P , Spiegelman BM . Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev . 2003;24(1):78–90. doi:10.1210/er.2002-0012 12588810
  • Dillon LM , Rebelo AP , Moraes CT . The role of PGC-1 coactivators in aging skeletal muscle and heart. IUBMB Life . 2012;64(3):231–241. doi:10.1002/iub.608 22279035
  • Hardie DG , Sakamoto K . AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology . 2006;21:48–60. doi:10.1152/physiol.00044.2005 16443822
  • Leick L , Fentz J , Biensø RS , et al. PGC-1{alpha} is required for AICAR-induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle. Am J Physiol Endocrinol Metab . 2010;299(3):E456–E465. doi:10.1152/ajpendo.00648.2009 20628026
  • Shen S , Liao Q , Zhang T , Pan R , Lin L . Myricanol modulates skeletal muscle-adipose tissue crosstalk to alleviate high-fat diet-induced obesity and insulin resistance. Br J Pharmacol . 2019;176(20):3983–4001. doi:10.1111/bph.14802 31339170
  • Yao S , Yuan Y , Zhang H , et al. Berberine attenuates the abnormal ectopic lipid deposition in skeletal muscle. Free Radic Biol Med . 2020;159:66–75. doi:10.1016/j.freeradbiomed.2020.07.028 32745766
  • Pan R , Zhu X , Maretich P , Chen Y . Combating obesity with thermogenic fat: current challenges and advancements. Front Endocrinol (Lausanne) . 2020;11:185. doi:10.3389/fendo.2020.00185 32351446
  • Mund RA , Frishman WH . Brown adipose tissue thermogenesis: β3-adrenoreceptors as a potential target for the treatment of obesity in humans. Cardiol Rev . 2013;21(6):265–269. doi:10.1097/CRD.0b013e31829cabff 23707990
  • Ghorbani M , Claus TH , Himms-Hagen J . Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in zucker fa/fa rats. Int J Obes Relat Metab Disord . 1997;21(6):465–475. doi:10.1038/sj.ijo.0800432 9192230
  • Ghorbani M , Claus TH , Himms-Hagen J . Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol . 1994;266(4 Pt 2):R1371–R1382. doi:10.1152/ajpregu.1994.266.4.R1371 7910436
  • Clookey SL , Welly RJ , Shay D , et al. Beta 3 adrenergic receptor activation rescues metabolic dysfunction in female estrogen receptor alpha-null mice. Front Physiol . 2019;10:9. doi:10.3389/fphys.2019.00009 30804793
  • Finlin BS , Memetimin H , Zhu B , et al. The beta3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J Clin Invest . 2020;130(5):2319–2331. doi:10.1172/JCI134892 31961829
  • Schlaepfer IR , Joshi M . CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology . 2020;161(2):bqz046. doi:10.1210/endocr/bqz046 31900483
  • Esser V , Brown NF , Cowan AT , Foster DW , McGarry JD . Expression of a cDNA isolated from rat brown adipose tissue and heart identifies the product as the muscle isoform of carnitine palmitoyltransferase I (M-CPT I). M-CPT I is the predominant CPT I isoform expressed in both white (epididymal) and brown adipocytes. J Biol Chem . 1996;271(12):6972–6977. doi:10.1074/jbc.271.12.6972 8636126
  • Price N , van der Leij F , Jackson V , et al. A novel brain-expressed protein related to carnitine palmitoyltransferase I. Genomics . 2002;80(4):433–442. doi:10.1006/geno.2002.6845 12376098
  • Kim JY , Hickner RC , Cortright RL , Dohm GL , Houmard JA . Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab . 2000;279:E1039–E1044. doi:10.1152/ajpendo.2000.279.5.E1039 11052958
  • Kim T , Moore JF , Sharer JD , Yang K , Wood PA , Yang Q . Carnitine palmitoyltransferase 1b deficient mice develop severe insulin resistance after prolonged high fat diet feeding. J Diabetes Metab . 2014;5:1000401. doi:10.4172/2155-6156.1000401 25580367
  • Li F , Li Y , Duan Y , Hu CA , Tang Y , Yin Y . Myokines and adipokines: involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev . 2017;33:73–82. doi:10.1016/j.cytogfr.2016.10.003 27765498
  • Coles CA . Adipokines in healthy skeletal muscle and metabolic disease. Adv Exp Med Biol . 2016;900:133–160.27003399
  • Yamauchi T , Kamon J , Minokoshi Y , et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med . 2002;8(11):1288–1295. doi:10.1038/nm788 12368907
  • Yoon MJ , Lee GY , Chung JJ , Ahn YH , Hong SH , Kim JB . Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes . 2006;55(9):2562–2570. doi:10.2337/db05-1322 16936205
  • Zhang Y , Matheny M , Zolotukhin S , Tumer N , Scarpace PJ . Regulation of adiponectin and leptin gene expression in white and brown adipose tissues: influence of beta3-adrenergic agonists, retinoic acid, leptin and fasting. Biochim Biophys Acta . 2002;1584(2–3):115–122. doi:10.1016/S1388-1981(02)00298-6 12385894
  • Lira VA , Brown DL , Lira AK , et al. Nitric oxide and AMPK cooperatively regulate PGC-1 in skeletal muscle cells. J Physiol . 2010;588(Pt 18):3551–3566. doi:10.1113/jphysiol.2010.194035 20643772
  • Okamoto S , Asgar NF , Yokota S , Saito K , Minokoshi Y . Role of the alpha2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells. Metabolism . 2019;90:52–68. doi:10.1016/j.metabol.2018.10.003 30359677
  • Castillo-Meléndez M , McKinley MJ , Summers RJ . Intracerebroventricular administration of the beta(3)-adrenoceptor agonist CL 316243 causes fos immunoreactivity in discrete regions of rat hypothalamus. Neurosci Lett . 2000;290(3):161–164. doi:10.1016/S0304-3940(00)01359-8 10963888
  • Richard JE , López-Ferreras L , Chanclón B , et al. CNS β 3-adrenergic receptor activation regulates feeding behavior, white fat browning, and body weight. Am J Physiol Endocrinol Metab . 2017;313(3):E344–E358. doi:10.1152/ajpendo.00418.2016 28588096