120
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Interhemispheric Functional Connectivity Alterations in Diabetic Optic Neuropathy: A Resting-State Functional Magnetic Resonance Imaging Study

ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 2077-2086 | Published online: 11 May 2021

References

  • Klein R , Klein BEK , Moss SE . The Wisconsin epidemiologic study of diabetic retinopathy: an update. Ophthalmology . 1990;18(1):19–22.
  • Li LM , Zhang XM , Wang J . The value of FFA diagnosis for diabetic optic neuropathy. Chin J Lab Diagn . 2007.
  • Liao D , Wang J , Zheng Y , et al. Characteristics of optical coherence tomography image in diabetic optic neuropathy. Int Eye Sci . 2016;16(10):1917–1920.
  • Margalit E , Sadda SR . Retinal and optic nerve diseases. Artif Organs . 2003;27(11):963–974. doi:10.1046/j.1525-1594.2003.07304.x 14616515
  • Ryan CM , Geckle MO , Orchard TJ . Cognitive efficiency declines over time in adults with Type 1 diabetes: effects of micro- and macrovascular complications. Diabetologia . 2003;46(7):940–948. doi:10.1007/s00125-003-1128-2 12819900
  • Nakamura M , Kanamori A , Negi A . Diabetes mellitus as a risk factor for glaucomatous optic neuropathy. Ophthalmologica . 2005;219(1):1–10. doi:10.1159/000081775 15627820
  • Biswal BB . Resting state fMRI: a personal history. Neuroimage . 2012;62(2):938–944. doi:10.1016/j.neuroimage.2012.01.090 22326802
  • Salvador R , Suckling J , Schwarzbauer C , Bullmore E . Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci . 2005;29(1457):937–946.
  • Li Q , Xin H , Lei Y , et al. Altered spontaneous brain activity pattern in patients with late monocular blindness in middle-age using amplitude of low-frequency fluctuation: a resting-state functional MRI study. Clin Interv Aging . 2016;11:1773–1780. doi:10.2147/CIA.S117292 27980398
  • Jian DX , Huang X , Zhong YL , et al. Disturbed spontaneous brain activity pattern in patients with primary angle-closure glaucoma using amplitude of low-frequency fluctuation: a fMRI study. Neuropsychiatr Dis Treat . 2015;11:1877–1883.26251603
  • Pan ZM , Li HJ , Jing B , et al. Altered intrinsic brain activities in patients with acute eye pain using amplitude of low-frequency fluctuation: a resting-state fMRI study. Neuropsychiatr Dis Treat . 2018;14:251–257. doi:10.2147/NDT.S150051 29386898
  • Hermesdorf M , Sundermann B , Feder S , et al. Major depressive disorder: findings of reduced homotopic connectivity and investigation of underlying structural mechanisms. Human Brain Mapping . 2016;37:1209–1217. doi:10.1002/hbm.23097 26704348
  • Stark DE , Margulies DS , Shehzad ZE , Reiss P , Milham MP . Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations. J Neurosci . 2009;28(51):13754–13764.
  • Marshall O , Uh J , Lurie D , et al. The influence of mild carbon dioxide on brain functional homotopy using resting‐state fMRI. Human Brain Mapping . 2015;36(10):3912–3921. doi:10.1002/hbm.22886 26138728
  • Liang M , Xie B , Yang H , et al. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study. Neuroradiology . 2017;59(5):517–524. doi:10.1007/s00234-017-1824-0 28341991
  • Zuo XN , Kelly C , Mennes M , et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J Neurosci . 2010;30(45):15034–15043. doi:10.1523/JNEUROSCI.2612-10.2010 21068309
  • Hou F , Xia L , Zhou Z , Zhou J , Li H . Reduction of interhemispheric functional brain connectivity in early blindness: a resting-state fMRI study. Biomed Res Int . 2017;2017:1–8.
  • Shi WQ, Liu JX, Yuan Q, et al. Alternations of interhemispheric functional connectivity in cornealulcer patients using voxel-mirrored homotopic connectivity: a resting state fMRIstudy. Acta Radiol. 2019;60(9):1159–1166. doi:10.1177/0284185118815308
  • Ye L , Wei R , Huang X , Shi WQ , Shao Y . Reduction in interhemispheric functional connectivity in the dorsal visual pathway in unilateral acute open globe injury patients: a resting-state fMRI study. Int J Ophthalmol . 2018;11(6):1056–1060. doi:10.18240/ijo.2018.06.26 29977823
  • Zhang Y , Zhu PW , Huang X , et al. Alternations of interhemispheric functional connectivity in patients with comitant exotropia: a resting state fMRI study. Int J Clin Exp Med . 2018;11(10):10966–10973.
  • Wang Y , Wang X , Chen W , et al. Brain function alternations in patients with diabetic nephropathy complicated by retinopathy under resting state conditions assessed by voxel-mirrored homotopic connectivity. Endocr Pract . 2020;26(3):291–298. doi:10.4158/EP-2019-0355 31682517
  • Metz CE . ROC methodology in radiologic imaging. Invest Radiol . 1986;21(9):720–733. doi:10.1097/00004424-198609000-00009 3095258
  • Obuchowski NA , Lieber ML , Wians FH . ROC curves in clinical chemistry: uses, misuses, and possible solutions. Clin Chem . 2004;50(7):1118–1125. doi:10.1373/clinchem.2004.031823 15142978
  • Akobeng AK . Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatrica . 2009;96(5):644–647.
  • Levin LA , Arnold AC . Neuro-ophthalmology: the practical guide. Thieme . 2005.
  • Cai F , Gao L , Gong H . Network centrality of resting-state fMRI in primary angle-closure glaucoma before and after surgery. PLoS One . 2015;10(10):e0141389. doi:10.1371/journal.pone.0141389 26506229
  • Carter JV , Pan J , Rai SN , Galandiuk S . ROC-ing along: evaluation and interpretation of receiver operating characteristic curves. Surgery . 2016;159(6):1638–1645. doi:10.1016/j.surg.2015.12.029 26962006
  • Krajka-Lauer J , Łukaszewicz M , Sawko A . Optic neuropathy in diabetic patients. Ann Acad Med Stetin . 2007;53 Suppl 1(Suppl 1):72–75.
  • Tanaka K . Inferotemporal cortex and higher visual functions. Curr Opin Neurobiol . 1992;2(4):502–505. doi:10.1016/0959-4388(92)90187-P 1525549
  • Wang G , Tanaka K , Tanifuji M . Optical imaging of functional organization in the monkey inferotemporal cortex. Science . 1996;272(5268):1665–1668. doi:10.1126/science.272.5268.1665 8658144
  • Fuster JM , Jervey JP . Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J Neurosci . 1982;2(3):361–375. doi:10.1523/JNEUROSCI.02-03-00361.1982 7062115
  • Cowey A , Gross C . Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys. Experimental Brain Research . 1970;11(2):128–144. doi:10.1007/BF00234318 4990604
  • Rocha-Miranda CE , Bender DB , Gross CG , Mishkin M . Visual activation of neurons in inferotemporal cortex depends on striate cortex and forebrain commisures. J Neurophysiol . 1975;38(3):475–491. doi:10.1152/jn.1975.38.3.475 1127451
  • Kanwisher N . The quest for the FFA and where it led. J Neurosci . 2017;37(5):1056. doi:10.1523/JNEUROSCI.1706-16.2016 28148806
  • Ghita A , Parvu D , Sava R , Georgescu L , Zagrean L . Electrophysiological changes in optic neuropathy of streptozotocin induced diabetic rats. J Med Life . 2013;6(3):340–348.24155786
  • Sikes RW , Vogt BA , Swadlow HA . Neuronal responses in rabbit cingulate cortex linked to quick-phase eye movements during nystagmus. J Neurophysiol . 1988;59(3):922–936. doi:10.1152/jn.1988.59.3.922 3367203
  • Berman RA , Colby CL , Genovese CR , Voyvodic JT , Sweeney JA . Cortical networks subserving pursuit and saccadic eye movements in humans: an FMRI study. Hum Brain Mapp . 2015;8(4):209–225. doi:10.1002/(SICI)1097-0193(1999)8:4<209::AID-HBM5>3.0.CO;2-0
  • Wei L , Lai JJ , Qu YM . Surgical treatment of gliomas involving the supplementary motor area in the superior frontal gyrus. Chin J Surg . 2004;42(13):781–783.15363294
  • Jamadar SD , Joanne F , Egan GF . Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades. Front Psychol . 2013;4. doi:10.3389/fpsyg.2013.00749
  • Schlag J , Schlag-Rey M . Evidence for a supplementary eye field. J Neurophysiol . 1987;57(1):179–200. doi:10.1152/jn.1987.57.1.179 3559671
  • Gaymard B , Pierrot-Deseilligny C , Rivaud S . Impairment of sequences of memory-guided saccades after supplementary motor area lesions. Ann Neurol . 2010;28(5):622–626. doi:10.1002/ana.410280504
  • Heide W , Kurzidim K , Kmpf D . Deficits of smooth pursuit eye movements after frontal and parietal lesions. Brain Struct Funct . 1997;119(6):1951–1969.
  • Joon Jeong P , Dong Ryeul O , Sung Pyo H , Kyoo Won L . Asymmetry analysis of the retinal nerve fiber layer thickness in normal eyes using optical coherence tomography. Korean J Ophthalmol . 2005;19(4):281. doi:10.3341/kjo.2005.19.4.281 16491818
  • Michele F , Chiara P , Francesco N , et al. Optical coherence tomography in patients with Chiari I malformation. Biomed Res Int . 2015;2015:1–7.
  • Sedgwick P . How to read a receiver operating characteristic curve. BMJ . 2015;350:h2464.25956305
  • Hua R , Qu L , Ma B , et al. Diabetic optic neuropathy and its risk factors in Chinese patients with diabetic retinopathy. Invest Ophthalmol Vis Sci . 2019;60(10):3514–3519. doi:10.1167/iovs.19-26825 31412110
  • Shao Y , Bao J , Huang X , Zhou FQ , Zhou Q . Comparative study of interhemispheric functional connectivity in left eye monocular blindness versus right eye monocular blindness: a resting-state functional MRI study. Oncotarget . 2018;9(18):14285–14295. doi:10.18632/oncotarget.24487 29581843
  • Dong ZZ , Zhu FY , Shi WQ , et al. Abnormalities of interhemispheric functional connectivity in individuals with acute eye pain: a resting-state fMRI study. Int J Ophthalmol . 2019;12(4):634–639. doi:10.18240/ijo.2019.04.18 31024819
  • Coiner B , Pan H , Bennett ML , Bodien YG , Stern E . Functional neuroanatomy of the human eye movement network: a review and atlas. Brain Struct Funct . 2019;224(8):2603–2617. doi:10.1007/s00429-019-01932-7 31407103