199
Views
0
CrossRef citations to date
0
Altmetric
Review

Non-Enzymatic Glycation of Transferrin and Diabetes Mellitus

, , , &
Pages 2539-2548 | Published online: 08 Jun 2021

References

  • Cho NH , Shaw JE , Karuranga S , et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract . 2018;138:271–281.29496507
  • Diagnosis and classification of diabetes mellitus. Diabetes Care . 2013;36 Suppl 1(Suppl1):S67–74.23264425
  • Younus H , Anwar S . Prevention of non-enzymatic glycosylation (glycation): implication in the treatment of diabetic complication. Int J Health Sci (Qassim) . 2016;10(2):261–277.27103908
  • Yuan F , Ahmed I , Lv L , et al. Impacts of glycation and transglutaminase-catalyzed glycosylation with glucosamine on the conformational structure and allergenicity of bovine β-lactoglobulin. Food Funct . 2018;9(7):3944–3955.29974110
  • Zhang Q , Monroe ME , Schepmoes AA , et al. Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. J Proteome Res . 2011;10(7):3076–3088.21612289
  • Gomme PT , McCann KB , Bertolini J . Transferrin: structure, function and potential therapeutic actions. Drug Discov Today . 2005;10(4):267–273.15708745
  • Gkouvatsos K , Papanikolaou G , Pantopoulos K . Regulation of iron transport and the role of transferrin. Biochim Biophys Acta . 2012;1820(3):188–202.22085723
  • Golizeh M , Lee K , Ilchenko S , et al. Increased serotransferrin and ceruloplasmin turnover in diet-controlled patients with type 2 diabetes. Free Radic Biol Med . 2017;113:461–469.29079528
  • Silva AM , Sousa PR , Coimbra JT , et al. The glycation site specificity of human serum transferrin is a determinant for transferrin’s functional impairment under elevated glycaemic conditions. Biochem J . 2014;461(1):33–42.24716439
  • Silva AMN , Coimbra JTS , Castro MM , et al. Determining the glycation site specificity of human holo-transferrin. J Inorg Biochem . 2018;186:95–102.29860209
  • Van Campenhout A , Van Campenhout C , Lagrou AR , Manuel YKB . Effects of in vitro glycation on Fe3+ binding and Fe3+ isoforms of transferrin. Clin Chem . 2004;50(9):1640–1649.15231685
  • Lee DH , Liu DY , Jacobs DR Jr , et al. Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care . 2006;29(5):1090–1095.16644642
  • Van Campenhout A , Van Campenhout C , Olyslager YS , Van Damme O , Lagrou AR , Manuel-y-Keenoy B . A novel method to quantify in vivo transferrin glycation: applications in diabetes mellitus. Clin Chim Acta . 2006;370(1–2):115–123.16513102
  • Van Campenhout A , Van Campenhout C , Lagrou AR , Moorkens G , De Block C , Manuel-y-Keenoy B . Iron-binding antioxidant capacity is impaired in diabetes mellitus. Free Radic Biol Med . 2006;40(10):1749–1755.16678014
  • Kunutsor SK , Apekey TA , Walley J , Kain K . Ferritin levels and risk of type 2 diabetes mellitus: an updated systematic review and meta-analysis of prospective evidence. Diabetes Metab Res Rev . 2013;29(4):308–318.23381919
  • Crownover BK , Covey CJ . Hereditary hemochromatosis. Am Fam Physician . 2013;87(3):183–190.23418762
  • Rattanaporn P , Tongsima S , Mandrup-Poulsen T , Svasti S , Tanyong D . Combination of ferric ammonium citrate with cytokines involved in apoptosis and insulin secretion of human pancreatic beta cells related to diabetes in thalassemia. PeerJ . 2020;8:e9298.32587797
  • Bao W , Rong Y , Rong S , Liu L . Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis. BMC Med . 2012;10:119.23046549
  • Hansen JB , Moen IW , Mandrup-Poulsen T . Iron: the hard player in diabetes pathophysiology. Acta Physiol (Oxf) . 2014;210(4):717–732.24521359
  • Varghese J , James J , Vaulont S , McKie A , Jacob M . Increased intracellular iron in mouse primary hepatocytes in vitro causes activation of the Akt pathway but decreases its response to insulin. Biochim Biophys Acta Gen Subj . 2018;1862(9):1870–1882.29859963
  • Kemp SF , Creech RH , Horn TR . Glycosylated albumin and transferrin: short-term markers of blood glucose control. J Pediatr . 1984;105(3):394–398.6470861
  • Hayashi A , Wada Y , Suzuki T , Shimizu A . Studies on familial hypotransferrinemia: unique clinical course and molecular pathology. Am J Hum Genet . 1993;53(1):201–213.8317485
  • Kawabata H . Transferrin and transferrin receptors update. Free Radic Biol Med . 2019;133:46–54.29969719
  • Luck AN , Mason AB . Transferrin-mediated cellular iron delivery. Curr Top Membr . 2012;69:3–35.23046645
  • Gao G , Li J , Zhang Y , Chang YZ . Cellular iron metabolism and regulation. Adv Exp Med Biol . 2019;1173:21–32.31456203
  • Ardehali R , Shi L , Janatova J , Mohammad SF , Burns GL . The inhibitory activity of serum to prevent bacterial adhesion is mainly due to apo-transferrin. J Biomed Mater Res A . 2003;66(1):21–28.12833427
  • Li H , Rybicki AC , Suzuka SM , et al. Transferrin therapy ameliorates disease in beta-thalassemic mice. Nat Med . 2010;16(2):177–182.20098432
  • Li H , Choesang T , Bao W , et al. Decreasing TfR1 expression reverses anemia and hepcidin suppression in β-thalassemic mice. Blood . 2017;129(11):1514–1526.28151426
  • Shen CY , Lu CH , Wu CH , et al. The development of Maillard reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with age-related diseases. Molecules . 2020;25:23.
  • Vetter SW . Glycated Serum Albumin and AGE Receptors. Adv Clin Chem . 2015;72:205–275.26471084
  • Bernstein RE . Nonenzymatically glycosylated proteins. Adv Clin Chem . 1987;26:1–78.3307325
  • Lee JH , Shin DH , Lupovitch A , Shi DX . Glycosylation of lens proteins in senile cataract and diabetes mellitus. Biochem Biophys Res Commun . 1984;123(3):888–893.6487331
  • Miller JA , Gravallese E , Bunn HF . Nonenzymatic glycosylation of erythrocyte membrane proteins. Relevance to diabetes. J Clin Invest . 1980;65(4):896–901.7358849
  • Tang SC , Chan LY , Leung JC , et al. Differential effects of advanced glycation end-products on renal tubular cell inflammation. Nephrology (Carlton) . 2011;16(4):417–425.21143336
  • Ahmed N . Advanced glycation end products–role in pathology of diabetic complications. Diabetes Res Clin Pract . 2005;67(1):3–21.15620429
  • Testa R , Bonfigli AR , Prattichizzo F , La Sala L , De Nigris V , Ceriello A . The “Metabolic memory” theory and the early treatment of hyperglycemia in prevention of diabetic complications. Nutrients . 2017;9:5.
  • O’Flaherty R , Muniyappa M , Walsh I , et al. A Robust and Versatile Automated Glycoanalytical Technology for Serum Antibodies and Acute Phase Proteins: ovarian Cancer Case Study. Mol Cell Proteomics . 2019;18(11):2191–2206.31471495
  • Penezić A , Križakova M , Miljuš G , Katrlik J , Nedić O . Diagnostic Potential of Transferrin Glycoforms-A Lectin-Based Protein Microarray Approach. Proteomics Clin Appl . 2019;13(5):e1800185.31050875
  • Saraswat M , Mäkitie A , Tohmola T , et al. Tongue cancer patients can be distinguished from healthy controls by specific N-glycopeptides found in serum. Proteomics Clin Appl . 2018;12(6):e1800061.29992770
  • Gudowska M , Gruszewska E , Wrona A , et al. The profile of serum transferrin isoforms in rheumatoid arthritis. J Clin Rheumatol . 2019;25(4):159–162.29782424
  • Cylwik B , Gruszewska E , Gindzienska-Sieskiewicz E , Kowal-Bielecka O , Chrostek L . Serum profile of transferrin isoforms in rheumatoid arthritis treated with biological drugs. Clin Biochem . 2019;74:31–35.31672652
  • Austin GE , Mullins RH , Morin LG . Non-enzymic glycation of individual plasma proteins in normoglycemic and hyperglycemic patients. Clin Chem . 1987;33(12):2220–2224.3690840
  • Suo M , Wen D , Wang W , Zhang T . Comparative study on hemoglobin A1c, glycated albumin and glycosylated serum protein in aplastic anemia patients with Type 2 diabetes mellitus. Biosci Rep . 2020;40:5.
  • Farhan SS , Hussain SA . Advanced glycation end products (AGEs) and their soluble receptors (sRAGE) as early predictors of reno-vascular complications in patients with uncontrolled type 2 diabetes mellitus. Diabetes Metab Syndr . 2019;13(4):2457–2461.31405660
  • Soboleva A , Mavropulo-Stolyarenko G , Karonova T , et al. Multiple glycation sites in blood plasma proteins as an integrated biomarker of Type 2 diabetes mellitus. Int J Mol Sci . 2019;20:9.
  • Frolov A , Blüher M , Hoffmann R . Glycation sites of human plasma proteins are affected to different extents by hyperglycemic conditions in type 2 diabetes mellitus. Anal Bioanal Chem . 2014;406(24):5755–5763.25074545
  • Zhao Z , Liu J , Shi B , He S , Yao X , Willcox MD . Advanced glycation end product (AGE) modified proteins in tears of diabetic patients. Mol Vis . 2010;16:1576–1584.20806041
  • Smilowitz JT , Totten SM , Huang J , et al. Human milk secretory immunoglobulin a and lactoferrin N-glycans are altered in women with gestational diabetes mellitus. J Nutr . 2013;143(12):1906–1912.24047700
  • Li YM . Glycation ligand binding motif in lactoferrin. Implications in diabetic infection. Adv Exp Med Biol . 1998;443:57–63.9781343
  • Liu J , Cheng J , Tang X , Fu S , Ma L , Tian Y . Puerarin reduces the levels of AGE-modified proteins in serum and retinal tissues to improve the retinal damage in diabetic rats. Lat.Am.J.Pharm . 2019;38(2):396–405.
  • Liu J , Wang L , Tang X , Fu S , Tian Y , Ma L . Analysis of differentially expressed advanced glycation end product-modified proteins in diabetic rat kidney. Int J Diabetes Dev Ctries . 2018;38:417–423.
  • Kumari K , Bansal V , Jagmohan ACG , Rastogi AK , Sahib MK . Retrospective glycemic status of diabetic patients: glycosylation of blood proteins in diabetes and chronic renal failure. Acta Diabetol Lat . 1987;24(2):91–99.3630538
  • Kunika K , Yamaoka T , Itakura M . Damage of charge-dependent renal tubular reabsorption causes diabetic microproteinuria. Diabetes Res Clin Pract . 1997;36(1):1–9.9187409
  • Sanajou D , Ghorbani Haghjo A , Argani H , Aslani S . AGE-RAGE axis blockade in diabetic nephropathy: current status and future directions. Eur J Pharmacol . 2018;833:158–164.29883668
  • Xia X , Mao D , Dai H , et al. Effect of Cyclocarya paliurus polysaccharides on streptozotocin-induced diabetic nephropathy in rats. J Tradit Chin Med . 2020;40(6):956–964.33258347
  • Wu Q , Liu H , Zhou M . Fangchinoline Ameliorates Diabetic retinopathy by inhibiting Receptor for Advanced Glycation End-Products (RAGE)-Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB) pathway in Streptozotocin (STZ)-induced diabetic rats. Med Sci Monit . 2019;25:1113–1121.30739905
  • Momeni Z , Bautista M , Neapetung J , et al. RAGE signaling is required for AMPA receptor dysfunction in the hippocampus of hyperglycemic mice. Physiol Behav . 2021;229:113255.33221393
  • Walke PB , Bansode SB , More NP , Chaurasiya AH , Joshi RS , Kulkarni MJ . Molecular investigation of glycated insulin-induced insulin resistance via insulin signaling and AGE-RAGE axis. Biochim Biophys Acta Mol Basis Dis . 2021;1867(2):166029.33248275
  • Yamagishi SI . Role of Advanced Glycation Endproduct (AGE)-Receptor for Advanced Glycation Endproduct (RAGE) Axis in Cardiovascular Disease and Its Therapeutic Intervention. Circ J . 2019;83(9):1822–1828.31366777
  • Yuan Y , Sun H , Sun Z . Advanced glycation end products (AGEs) increase renal lipid accumulation: a pathogenic factor of diabetic nephropathy (DN). Lipids Health Dis . 2017;16(1):126.28659153
  • Takahashi A , Takabatake Y , Kimura T , et al. Autophagy inhibits the accumulation of advanced glycation end products by promoting lysosomal biogenesis and function in the kidney proximal tubules. Diabetes . 2017;66(5):1359–1372.28246295
  • Shu T , Zhu Y , Wang H , Lin Y , Ma Z , Han X . AGEs decrease insulin synthesis in pancreatic β-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS One . 2011;6(4):e18782.21533167
  • Ghanbari Z , Housaindokht MR , Bozorgmehr MR , Izadyar M . The effect of glycosylation on the transferrin structure: a molecular dynamic simulation analysis. J Theor Biol . 2016;404:73–81.27235585
  • Fujimoto S , Kawakami N , Ohara A . Nonenzymatic glycation of transferrin: decrease of iron-binding capacity and increase of oxygen radical production. Biol Pharm Bull . 1995;18(3):396–400.7550090
  • Georgieff MK , Petry CD , Mills MM , McKay H , Wobken JD . Increased N-glycosylation and reduced transferrin-binding capacity of transferrin receptor isolated from placentae of diabetic women. Placenta . 1997;18(7):563–568.9290152
  • Fernández-Real JM , López-Bermejo A , Ricart W . Cross-talk between iron metabolism and diabetes. Diabetes . 2002;51(8):2348–2354.12145144
  • Simcox JA , McClain DA . Iron and diabetes risk. Cell Metab . 2013;17(3):329–341.23473030
  • Fernández-Real JM , McClain D , Manco M . Mechanisms linking glucose homeostasis and iron metabolism toward the onset and progression of Type 2 diabetes. Diabetes Care . 2015;38(11):2169–2176.26494808
  • Shu T , Lv Z , Xie Y , Tang J , Mao X . Hepcidin as a key iron regulator mediates glucotoxicity-induced pancreatic β-cell dysfunction. Endocr Connect . 2019;8(3):150–161.30776286
  • Chuansumrit A , Pengpis P , Mahachoklertwattana P , et al. Effect of iron chelation therapy on glucose metabolism in non-transfusion-dependent thalassaemia. Acta Haematol . 2017;137(1):20–26.27838686
  • Gao W , Li X , Gao Z , Li H . Iron increases diabetes-induced kidney injury and oxidative stress in rats. Biol Trace Elem Res . 2014;160(3):368–375.24996958
  • Niederau C , Berger M , Stremmel W , et al. Hyperinsulinaemia in non-cirrhotic haemochromatosis: impaired hepatic insulin degradation? Diabetologia . 1984;26(6):441–444.6381191
  • Jahng JWS , Alsaadi RM , Palanivel R , et al. Iron overload inhibits late stage autophagic flux leading to insulin resistance. EMBO Rep . 2019;20(10):e47911.31441223
  • Farah MA , Bose S , Lee JH , Jung HC , Kim Y . Analysis of glycated insulin by MALDI-TOF mass spectrometry. Biochim Biophys Acta . 2005;1725(3):269–282.16165279
  • Abdel-Wahab YH , O’Harte FP , Boyd AC , Barnett CR , Flatt PR . Glycation of insulin results in reduced biological activity in mice. Acta Diabetol . 1997;34(4):265–270.9451470
  • Hunter SJ , Boyd AC , O’Harte FP , et al. Demonstration of glycated insulin in human diabetic plasma and decreased biological activity assessed by euglycemic-hyperinsulinemic clamp technique in humans. Diabetes . 2003;52(2):492–498.12540626
  • Rhinesmith T , Turkette T , Root-Bernstein R . Rapid Non-enzymatic glycation of the insulin receptor under hyperglycemic conditions inhibits insulin binding in vitro: implications for insulin resistance. Int J Mol Sci . 2017;18:12.
  • Li S , Zheng L , Zhang J , Liu X , Wu Z . Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy. Free Radic Biol Med . 2021;162:435–449.33152439
  • Li D , Jiang C , Mei G , et al. Quercetin Alleviates Ferroptosis of Pancreatic β Cells in Type 2 Diabetes. Nutrients . 2020;12:10.
  • Feng Y , Feng Q , Lv Y , Song X , Qu H , Chen Y . The relationship between iron metabolism, stress hormones, and insulin resistance in gestational diabetes mellitus. Nutr Diabetes . 2020;10(1):17.32513913
  • Zhao L , Zou Y , Zhang J , et al. Serum transferrin predicts end-stage Renal Disease in Type 2 diabetes mellitus patients. Int J Med Sci . 2020;17(14):2113–2124.32922172
  • Deng G , Dyroff SL , Lockart M , Bowman MK , Vincent JB . The effects of the glycation of transferrin on chromium binding and the transport and distribution of chromium in vivo. J Inorg Biochem . 2016;164:26–33.27592288
  • Abdel-Wahab YH , O’Harte FP , Mooney MH , Barnett CR , Flatt PR . Vitamin C supplementation decreases insulin glycation and improves glucose homeostasis in obese hyperglycemic (ob/ob) mice. Metabolism . 2002;51(4):514–517.11912563
  • Mirmiranpour H , Khaghani S , Bathaie SZ , et al. The preventive effect of l-lysine on lysozyme glycation in Type 2 diabetes. Acta Med Iran . 2016;54(1):24–31.26853287