177
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Complement C7 is Specifically Expressed in Mesangial Cells and is a Potential Diagnostic Biomarker for Diabetic Nephropathy and is Regulated by miR-494-3p and miR-574-5p

, , , &
Pages 3077-3088 | Published online: 05 Jul 2021

References

  • Singh DK , Winocour P , Farrington K . Oxidative stress in early diabetic nephropathy: fueling the fire. Nat Rev Endocrinol . 2011;7(3):176–184. doi:10.1038/nrendo.2010.212 21151200
  • Qi C , Mao X , Zhang Z , et al. Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res . 2017;2017:8637138. doi:10.1155/2017/8637138 28316995
  • Ruiz-Ortega M , Rodrigues-Diez RR , Lavoz C , et al. Special issue “diabetic nephropathy: diagnosis, prevention and treatment”. J Clin Med . 2020;9(3):813. doi:10.3390/jcm9030813
  • Nakagawa T , Tanabe K , Croker BP , et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol . 2011;7(1):36–44. doi:10.1038/nrneph.2010.152 21045790
  • Huang K , Maruyama T , Fan G . The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell . 2014;15(4):410–415. doi:10.1016/j.stem.2014.09.014 25280217
  • Bao L , Guo T , Wang J , Zhang K , Bao M . Prognostic genes of triple-negative breast cancer identified by weighted gene co-expression network analysis. Oncol Lett . 2020;19(1):127–138. doi:10.3892/ol.2019.11079 31897123
  • Malki K , Tosto MG , Jumabhoy I , et al. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics . 2013;14(16):1979–1990. doi:10.2217/pgs.13.154 24279853
  • Zuo Z , Shen J-X , Pan Y , et al. Weighted Gene Correlation Network Analysis (WGCNA) detected loss of MAGI2 promotes Chronic Kidney Disease (CKD) by podocyte damage. Cell Physiol Biochem . 2018;51(1):244–261. doi:10.1159/000495205 30448842
  • Hedlund E , Deng Q . Single-cell RNA sequencing: technical advancements and biological applications. Mol Aspects Med . 2018;59:36–46. doi:10.1016/j.mam.2017.07.003 28754496
  • Wilson PC , Wu H , Kirita Y , et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc Natl Acad Sci U S A . 2019;116(39):19619–19625. doi:10.1073/pnas.1908706116 31506348
  • Ricklin D , Hajishengallis G , Yang K , et al. Complement: a key system for immune surveillance and homeostasis. Nat Immunol . 2010;11(9):785–797. doi:10.1038/ni.1923 20720586
  • Li L , Yin Q , Tang X , et al. C3a receptor antagonist ameliorates inflammatory and fibrotic signals in type 2 diabetic nephropathy by suppressing the activation of TGF-beta/smad3 and IKBalpha pathway. PLoS One . 2014;9(11).
  • Lee CS , Mauer SM , Brown DM , et al. Renal transplantation in diabetes mellitus in rats. J Exp Med . 1974;139(4):793–800. doi:10.1084/jem.139.4.793 4273909
  • Krützfeldt J , Rajewsky N , Braich R , et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature . 2005;438(7068):685. doi:10.1038/nature04303 16258535
  • Zhou H , Ni W-J , Meng X-M , et al. MicroRNAs as regulators of immune and inflammatory responses: potential therapeutic targets in diabetic nephropathy. Front Cell Dev Biol . 2021;8:618536. doi:10.3389/fcell.2020.618536 33569382
  • Kato M , Natarajan R . MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci . 2015;1353:72–88. doi:10.1111/nyas.12758 25877817
  • Woroniecka KI , Park ASD , Mohtat D , et al. Transcriptome analysis of human diabetic kidney disease. Diabetes . 2011;60(9):2354–2369. doi:10.2337/db10-1181 21752957
  • Pan Y , Jiang S , Hou Q , et al. Dissection of glomerular transcriptional profile in patients with diabetic nephropathy: SRGAP2a protects podocyte structure and function. Diabetes . 2018;67(4):717–730. doi:10.2337/db17-0755 29242313
  • Langfelder P , Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinform . 2008;9:559. doi:10.1186/1471-2105-9-559
  • Yu G , Wang L-G , Han Y , et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS . 2012;16(5):284–287. doi:10.1089/omi.2011.0118 22455463
  • Subramanian A , Tamayo P , Mootha VK , et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A . 2005;102(43):15545–15550. doi:10.1073/pnas.0506580102 16199517
  • Dweep H , Gretz N . miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods . 2015;12(8):697. doi:10.1038/nmeth.3485 26226356
  • Agarwal V , Bell GW , Nam J-W , et al. Predicting effective microRNA target sites in mammalian mRNAs. eLife . 2015;4. doi:10.7554/eLife.05005
  • Ioannou K . Diabetic nephropathy: is it always there? Assumptions, weaknesses and pitfalls in the diagnosis. Hormones (Athens) . 2017;16(4):351–361. doi:10.14310/horm.2002.1755 29518755
  • Sircar M , Rosales IA , Selig MK , et al. Complement 7 is up-regulated in human early diabetic kidney disease. Am J Pathol . 2018;188(10):2147–2154. doi:10.1016/j.ajpath.2018.06.018 30253844
  • Li XX , Wang LJ , Hou J , et al. Identification of long noncoding rnas as predictors of survival in triple-negative breast cancer based on network analysis. Biomed Res Int . 2020;2020:8970340.32190687
  • Zhu Y , Huang Y , Tan Y , et al. Single-cell RNA sequencing in hematological diseases. Proteomics . 2020;20:e1900228. doi:10.1002/pmic.201900228 32181578
  • Daugan M , Noe R , Herman Fridman W , et al. [The complement system: a double edge sword in tumor progression]. Med Sci (Paris) . 2017;33(10):871–877. doi:10.1051/medsci/20173310019. French.28994383
  • Gialeli C , Gungor B , Blom AM . Novel potential inhibitors of complement system and their roles in complement regulation and beyond. Mol Immunol . 2018;102:73–83. doi:10.1016/j.molimm.2018.05.023 30217334
  • Lo MW , Woodruff TM . Complement: bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol . 2020;108(1):339–351. doi:10.1002/JLB.3MIR0220-270R 32182389
  • Roumenina LT , Daugan MV , Petitprez F , et al. Context-dependent roles of complement in cancer. Nat Rev Cancer . 2019;19(12):698–715. doi:10.1038/s41568-019-0210-0 31666715
  • Biewenga M , Farina Sarasqueta A , Tushuizen ME , et al. The role of complement activation in autoimmune liver disease. Autoimmun Rev . 2020;19(6):102534. doi:10.1016/j.autrev.2020.102534 32234403
  • Willows J , Brown M , Sheerin NS . The role of complement in kidney disease. Clin Med (Lond) . 2020;20(2):156–160. doi:10.7861/clinmed.2019-0452 32188650
  • Hobart MJ , Fernie BA , DiScipio RG . Structure of the human C7 gene and comparison with the C6, C8A, C8B, and C9 genes. J Immunol . 1995;154(10):5188–5194.7730625
  • DiScipio RG , Chakravarti DN , Muller-Eberhard HJ , et al. The structure of human complement component C7 and the C5b-7 complex. J Biol Chem . 1988;263(1):549–560. doi:10.1016/S0021-9258(19)57427-0 3335508
  • Ying L , Zhang F , Pan X , et al. Complement component 7 (C7), a potential tumor suppressor, is correlated with tumor progression and prognosis. Oncotarget . 2016;7(52):86536–86546. doi:10.18632/oncotarget.13294 27852032
  • Uesugi N , Sakata N , Nangaku M , et al. Possible mechanism for medial smooth muscle cell injury in diabetic nephropathy: glycoxidation-mediated local complement activation. Am J Kidney Dis . 2004;44(2):224–238. doi:10.1053/j.ajkd.2004.04.027 15264180
  • Lahoria R , Selcen D , Engel AG . Microvascular alterations and the role of complement in dermatomyositis. Brain . 2016;139(Pt 7):1891–1903. doi:10.1093/brain/aww122 27190020
  • Kissel JT , Mendell JR , Rammohan KW . Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med . 1986;314(6):329–334. doi:10.1056/NEJM198602063140601 3945256
  • Fearn A , Sheerin NS . Complement activation in progressive renal disease. World J Nephrol . 2015;4(1):31–40. doi:10.5527/wjn.v4.i1.31 25664245
  • Falk RJ , Sisson SP , Dalmasso AP , et al. Ultrastructural localization of the membrane attack complex of complement in human renal tissues. Am J Kidney Dis . 1987;9(2):121–128. doi:10.1016/S0272-6386(87)80089-6 3548335
  • Mongroo PS , Rustgi AK . The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther . 2014;10(3):219–222. doi:10.4161/cbt.10.3.12548
  • Zhou DD , Li HL , Liu W , et al. miR-193a-3p promotes the invasion, migration, and mesenchymal transition in glioma through regulating BTRC. Biomed Res Int . 2021;2021(80):1–22.