248
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Association Between Plasma Fatty Acid and Cognitive Function Mediated by Inflammation in Patients with Type 2 Diabetes Mellitus

, , , , &
Pages 1423-1436 | Published online: 06 May 2022

References

  • IDF Diabetes Atlas. International diabetes mellitus [homepage on the internet] 2021; 2021. Available from: https://diabetesatlas.org/. Accessed December 1, 2021.
  • Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ. 2020;369:m997. doi:10.1136/bmj.m997
  • Miles WR, Root HF. Psychologic tests applied to diabetic patients. Arch Intern Med. 1922;30:767–777. doi:10.1001/archinte.1922.00110120086003
  • Nunley KA, Rosano C, Ryan CM, et al. Clinically relevant cognitive impairment in middle-aged adults with childhood-onset Type 1 diabetes. Diabetes Care. 2015;38(9):1768–1776. doi:10.2337/dc15-0041
  • Rawlings AM, Sharrett AR, Schneider AL, et al. Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann Intern Med. 2014;161:785–793. doi:10.7326/m14-0737
  • Biessels GJ, Deary IJ, Ryan CM. Cognition and diabetes: a lifespan perspective. Lancet Neurol. 2008;7:184–190. doi:10.1016/s1474-4422(08)70021-8
  • Li JQ, Tan L, Wang HF, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. J Neurol Neurosurg Psychiatry. 2016;87:476–484. doi:10.1136/jnnp-2014-310095
  • Zheng F, Yan L, Yang Z, et al. HbA (1c), diabetes and cognitive decline: the English longitudinal study of ageing. Diabetologia. 2018;61:839–848. doi:10.1007/s00125-017-4541-7
  • Sink KM, Divers J, Whitlow CT, et al. Cerebral structural changes in diabetic kidney disease: African American-Diabetes Heart Study MIND. Diabetes Care. 2015;38:206–212. doi:10.2337/dc14-1231
  • Morris JK, Vidoni ED, Honea RA, et al. Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiol Aging. 2014;35:585–589. doi:10.1016/j.neurobiolaging.2013.09.033
  • Zhang DA, Lam V, Chu V, et al. Type 2 diabetes with comorbid depression in relation to cognitive impairment: an opportunity for prevention? Mol Neurobiol. 2018;55:85–89. doi:10.1007/s12035-017-0719-8
  • Nooyens AC, Baan CA, Spijkerman AM, et al. Type 2 diabetes and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Diabetes Care. 2010;33:1964–1969. doi:10.2337/dc09-2038
  • Hammad SS, Jones PJ. Dietary fatty acid composition modulates obesity and interacts with obesity-related genes. Lipids. 2017;52:803–822. doi:10.1007/s11745-017-4291-9
  • Namekawa J, Takagi Y, Wakabayashi K, et al. Effects of high-fat diet and fructose-rich diet on obesity, dyslipidemia and hyperglycemia in the WBN/Kob-Lepr (fa) rat, a new model of type 2 diabetes mellitus. J Vet Med Sci. 2017;79:988–991.
  • Barrière DA, Noll C, Roussy G, et al. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep. 2018;8(1):424. doi:10.1038/s41598-017-18896-5
  • Pimentel GD, Lira FS, Rosa JC, et al. Intake of trans fatty acids during gestation and lactation leads to hypothalamic inflammation via TLR4/NFκBp65 signaling in adult offspring. J Nutr Biochem. 2012;23(3):265–271. doi:10.1016/j.jnutbio.2010.12.003
  • Finucane OM, Lyons CL, Murphy AM, et al. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes. 2015;64:2116–2128. doi:10.2337/db14-1098.
  • Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J Nutr Biochem. 2013;24:1663–1677. doi:10.1016/j.jnutbio.2013.05.005
  • Fan R, Zhao L, Ding BJ, et al. The association of blood non-esterified fatty acid, saturated fatty acids, and polyunsaturated fatty acids levels with mild cognitive impairment in Chinese population aged 35–64 years: a cross-sectional study. Nutr Neurosci. 2019:1–13. doi:10.1080/1028415x.2019.1610606
  • Mozaffarian D. Saturated fatty acids and type 2 diabetes: more evidence to re-invent dietary guidelines. Lancet Diabetes Endocrinology. 2014;2(10):770–772. doi:10.1016/s2213-8587(14)70166-4
  • Hwang DH, Kim JA, Lee JY. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Eur J Pharmacol. 2016;785:24–35. doi:10.1016/j.ejphar.2016.04.024
  • Gérard P. Gut microbiota and obesity. Cell Mol Life Sci. 2016;73(1):147–162. doi:10.1007/s00018-015-2061-5
  • Cao H, Gerhold K, Mayers JR, et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:933–944. doi:10.1016/j.cell.2008.07.048
  • Souza CO, Teixeira AA, Lima EA, et al. Palmitoleic acid (n-7) attenuates the immunometabolic disturbances caused by a high-fat diet independently of PPARα. Mediators Inflamm. 2014;2014:582197. doi:10.1155/2014/582197
  • Duarte AI, Candeias E, Alves IN, et al. Liraglutide protects against brain Amyloid-β (1–42) accumulation in female mice with early Alzheimer’s disease-like pathology by partially rescuing oxidative/nitrosative stress and inflammation. Int J Mol Sci. 2020;21(5):1746. doi:10.3390/ijms21051746
  • Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res. 2014;53:1–17. doi:10.1016/j.plipres.2013.10.002
  • Solfrizzi V, Custodero C, Lozupone M, et al. Relationships of dietary patterns, foods, and micro- and macronutrients with Alzheimer’s disease and late-life cognitive disorders: a systematic review. J Alzheimer’s Dis. 2017;59:815–849. doi:10.3233/jad-170248
  • Lankinen MA, Stančáková A, Uusitupa M, et al. Plasma fatty acids as predictors of glycaemia and type 2 diabetes. Diabetologia. 2015;58(11):2533–2544. doi:10.1007/s00125-015-3730-5
  • Wu JHY, Marklund M, Imamura F, et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinology. 2017;5:965–974. doi:10.1016/s2213-8587(17)30307-8
  • Ding B, Xiao R, Ma W, et al. The association between macronutrient intake and cognition in individuals aged under 65 in China: a cross-sectional study. BMJ open. 2018;8:e018573. doi:10.1136/bmjopen-2017-018573
  • Dong Y, Yean Lee W, Hilal S, et al. Comparison of the Montreal cognitive assessment and the mini-mental state examination in detecting multi-domain mild cognitive impairment in a Chinese sub-sample drawn from a population-based study. Int Psychogeriatr. 2013;25(11):1831–1838. doi:10.1017/s1041610213001129
  • Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi:10.1007/bf00280883
  • Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–2410. doi:10.1210/jcem.85.7.6661
  • Li K, Brennan L, McNulty BA, et al. Plasma fatty acid patterns reflect dietary habits and metabolic health: a cross-sectional study. Mol Nutr Food Res. 2016;60(9):2043–2052. doi:10.1002/mnfr.201500711
  • Muthén BO, Muthén LK, Asparouhov T. Regression and Mediation Analysis Using Mplus. Los Angeles, CA: Muthén & Muthén; 2016.
  • Sharma G, Parihar A, Talaiya T, et al. Cognitive impairments in type 2 diabetes, risk factors and preventive strategies. J Basic Clin Physiol Pharmacol. 2020;31. doi:10.1515/jbcpp-2019-0105
  • Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106(4):473–481. doi:10.1172/jci10842
  • Parvaresh Rizi E, Baig S, Shabeer M, et al. Meal rich in carbohydrate, but not protein or fat, reveals adverse immunometabolic responses associated with obesity. Nutr J. 2016;15(1):100. doi:10.1186/s12937-016-0219-0
  • McLean FH, Campbell FM, Langston RF, et al. A high-fat diet induces rapid changes in the mouse hypothalamic proteome. Nutr Metab. 2019;16(1):26. doi:10.1186/s12986-019-0352-9
  • Hou Q, Guan Y, Yu W, et al. Associations between obesity and cognitive impairment in the Chinese elderly: an observational study. Clin Interv Aging. 2019;14:367–373. doi:10.2147/cia.S192050
  • Allen PJ, Batra P, Geiger BM, et al. Rationale and consequences of reclassifying obesity as an addictive disorder: neurobiology, food environment and social policy perspectives. Physiol Behav. 2012;107:126–137. doi:10.1016/j.physbeh.2012.05.005
  • Alosco ML, Gunstad J. The negative effects of obesity and poor glycemic control on cognitive function: a proposed model for possible mechanisms. Curr Diab Rep. 2014;14(6):495. doi:10.1007/s11892-014-0495-z
  • Gardarsdottir M, Sigurdsson S, Aspelund T, et al. Atrial fibrillation is associated with decreased total cerebral blood flow and brain perfusion. Ep Europace. 2018;20(8):1252–1258. doi:10.1093/europace/eux220
  • Dohrmann DD, Putnik P, Bursać Kovačević D, et al. Japanese, Mediterranean and Argentinean diets and their potential roles in neurodegenerative diseases. Food Res Int. 2019;120:464–477. doi:10.1016/j.foodres.2018.10.090
  • Yu H, Bi Y, Ma W, et al. Long-term effects of high lipid and high energy diet on serum lipid, brain fatty acid composition, and memory and learning ability in mice. Int J Dev Neurosci. 2010;28(3):271–276. doi:10.1016/j.ijdevneu.2009.12.001
  • Laitinen MH, Ngandu T, Rovio S, et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Disord. 2006;22(1):99–107. doi:10.1159/000093478
  • Solfrizzi V, Colacicco AM, D’Introno A, et al. Dietary intake of unsaturated fatty acids and age-related cognitive decline: a 8.5-year follow-up of the Italian Longitudinal Study on Aging. Neurobiol Aging. 2006;27(11):1694–1704. doi:10.1016/j.neurobiolaging.2005.09.026
  • Solfrizzi V, Frisardi V, Seripa D, et al. Mediterranean diet in predementia and dementia syndromes. Curr Alzheimer Res. 2011;8:520–542. doi:10.2174/156720511796391809
  • MacDonald-Wicks L, McEvoy M, Magennis E, et al. Dietary long-chain fatty acids and cognitive performance in older Australian adults. Nutrients. 2019;11. doi:10.3390/nu11040711
  • Kalmijn S, Feskens EJ, Launer LJ, et al. Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. Am J Epidemiol. 1997;145:33–41. doi:10.1093/oxfordjournals.aje.a009029
  • Grimble RF, Tappia PS. Modulation of pro-inflammatory cytokine biology by unsaturated fatty acids. Z Ernahrungswiss. 1998;37(Suppl 1):57–65.
  • Bigornia SJ, Scott TM, Harris WS, et al. Prospective associations of erythrocyte composition and dietary intake of n-3 and n-6 PUFA with measures of cognitive Function. Nutrients. 2018;10(9):1253. doi:10.3390/nu10091253
  • Dong Y, Xu M, Kalueff AV, et al. Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1β administration. Eur J Nutr. 2018;57:1781–1791. doi:10.1007/s00394-017-1462-7
  • Stavrinou PS, Andreou E, Aphamis G, et al. The effects of a 6-month high dose omega-3 and omega-6 polyunsaturated fatty acids and antioxidant vitamins supplementation on cognitive function and functional capacity in older adults with mild cognitive impairment. Nutrients. 2020;12(2):325. doi:10.3390/nu12020325
  • Bonafini S, Giontella A, Tagetti A, et al. Fatty acid profile and desaturase activities in 7–10-year-old children attending primary school in Verona south district: association between palmitoleic acid, SCD-16, Indices of adiposity, and blood Pressure. Int J Mol Sci. 2020;21(11):3899. doi:10.3390/ijms21113899
  • Kopf T, Schaefer HL, Troetzmueller M, et al. Influence of fenofibrate treatment on triacylglycerides, diacylglycerides and fatty acids in fructose fed rats. PLoS One. 2014;9:e106849. doi:10.1371/journal.pone.0106849
  • Astarita G, Jung KM, Vasilevko V, et al. Elevated stearoyl-CoA desaturase in brains of patients with Alzheimer’s disease. PLoS One. 2011;6:e24777. doi:10.1371/journal.pone.0024777
  • Obukowicz M, Welsch D, Salsgiver W, et al. Novel, selective delta6 or delta5 fatty acid desaturase inhibitors as antiinflammatory agents in mice. Lipids. 1999;34(Suppl):S149. doi:10.1007/bf02562269
  • Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011;11:738–749. doi:10.1038/nri3071
  • Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. doi:10.1038/nri2925
  • Dutheil S, Ota KT, Wohleb ES, et al. High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacology. 2016;41:1874–1887. doi:10.1038/npp.2015.357
  • Tamer F, Ulug E, Akyol A, et al. The potential efficacy of dietary fatty acids and fructose induced inflammation and oxidative stress on the insulin signaling and fat accumulation in mice. Food Chem Toxicol. 2020;135:110914. doi:10.1016/j.fct.2019.110914
  • Granholm AC, Bimonte-Nelson HA, Moore AB, et al. Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J Alzheimers Dis. 2008;14:133–145. doi:10.3233/jad-2008-14202
  • O’Mahoney LL, Matu J, Price OJ, et al. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials. Cardiovasc Diabetol. 2018;17:98. doi:10.1186/s12933-018-0740-x
  • Guillemot-Legris O, Muccioli GG. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 2017;40:237–253. doi:10.1016/j.tins.2017.02.005
  • Hao S, Dey A, Yu X, et al. Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun. 2016;51:230–239. doi:10.1016/j.bbi.2015.08.023
  • Zheng M, Chang B, Tian L, et al. Relationship between inflammatory markers and mild cognitive impairment in Chinese patients with type 2 diabetes: a case-control study. BMC Endocr Disord. 2019;19(1):73. doi:10.7326/M14-0737
  • Lien CY, Lu CH, Chang CC, et al. Correlation between hypovitaminosis D and nutritional status with the severity of clinical symptoms and impaired cognitive function in patients with Parkinson’s disease. Acta neurologica Taiwanica. 2021;30(2):63–73.
  • John A, Rusted J, Richards M, et al. Accumulation of affective symptoms and midlife cognitive function: the role of inflammation. Brain Behav Immun. 2020;84:164–172. doi:10.1016/j.bbi.2019.11.021