186
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Therapeutic Potential of Fingolimod in Diabetes Mellitus and Its Chronic Complications

, , , &
Pages 507-516 | Received 23 Oct 2023, Accepted 19 Jan 2024, Published online: 01 Feb 2024

References

  • Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi:10.1016/j.diabres.2021.109119
  • Yang XD, Yang YY. Ferroptosis as a novel therapeutic target for diabetes and its complications. Front Endocrinol. 2022;13:853822. doi:10.3389/fendo.2022.853822
  • Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377–390. doi:10.1038/s41581-020-0278-5
  • Entezari M, Hashemi D, Taheriazam A, et al. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: a pre-clinical and clinical investigation. Biomed Pharmacother. 2022;146:112563. doi:10.1016/j.biopha.2021.112563
  • Susan Van D, Beulens JWJ, Yvonne T, Van Der S, Grobbee DE, Nealb B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17(1_suppl):s3–s8. doi:10.1097/01.hjr.0000368191.86614.5a
  • Yang M, Chen J, Chen L. The roles of mesenchymal stem cell-derived exosomes in diabetes mellitus and its related complications. Front Endocrinol. 2022;13:1027686. doi:10.3389/fendo.2022.1027686
  • Ng ML, Wadham C, Sukocheva OA. The role of sphingolipid signalling in diabetes-associated pathologies (Review). IntJ Mol Med. 2017;39(2):243–252. doi:10.3892/ijmm.2017.2855
  • Jessup F, Bonder CS, Pitson CM, Toby S, Coates H. The sphingolipid rheostat: a potential target for improving pancreatic islet survival and function. EMIDDT. 2011;11(4):262–272. doi:10.2174/187153011797881201
  • Yazdi A, Ghasemi‐Kasman M, Javan M. Possible regenerative effects of fingolimod (FTY720) in multiple sclerosis disease: an overview on remyelination process. J Neurosci Res. 2020;98(3):524–536. doi:10.1002/jnr.24509
  • White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget. 2016;7(17):23106–23127. doi:10.18632/oncotarget.7145
  • Zhang L, Wang H. FTY720 in CNS injuries: molecular mechanisms and therapeutic potential. Brain Res Bull. 2020;164:75–82. doi:10.1016/j.brainresbull.2020.08.013
  • Yin Z, Fan L, Wei L, et al. FTY720 protects cardiac microvessels of diabetes: a critical role of S1P1/3 in diabetic heart disease. PLoS One. 2012;7(8):e42900. doi:10.1371/journal.pone.0042900
  • Gesualdo C, Balta C, Platania CBM, et al. Fingolimod and diabetic retinopathy: a drug repurposing study. Front Pharmacol. 2021;12:718902. doi:10.3389/fphar.2021.718902
  • Sood A, Fernandes V, Preeti K, Khot M, Khatri DK, Singh SB. Fingolimod alleviates cognitive deficit in type 2 diabetes by promoting microglial M2 polarization via the pSTAT3-jmjd3 axis. Mol Neurobiol. 2023;60(2):901–922. doi:10.1007/s12035-022-03120-x
  • Bravo GÁ, Cedeño RR, Casadevall MP, Ramió-Torrentà L. Sphingosine-1-Phosphate (S1P) and S1P signaling pathway modulators, from current insights to future perspectives. Cells. 2022;11(13):2058. doi:10.3390/cells11132058
  • Takabe K, Paugh SW, Milstien S, Spiegel S. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev. 2008;60(2):181–195. doi:10.1124/pr.107.07113
  • Huwiler A, Zangemeister-Wittke U. The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: recent findings and new perspectives. Pharmacol Ther. 2018;185:34–49. doi:10.1016/j.pharmthera.2017.11.001
  • Cartier A, Hla T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science. 2019;366(6463):eaar5551. doi:10.1126/science.aar5551
  • Stepanovska B, Huwiler A. Targeting the S1P receptor signaling pathways as a promising approach for treatment of autoimmune and inflammatory diseases. Pharmacol Res. 2020;154:104170. doi:10.1016/j.phrs.2019.02.009
  • Boldizsar F, Tarjanyi O, Olasz K, et al. FTY720 (Gilenya) treatment prevents spontaneous autoimmune myocarditis and dilated cardiomyopathy in transgenic HLA-DQ8-BALB/c mice. Cardiovasc Pathol. 2016;25(5):353–361. doi:10.1016/j.carpath.2016.05.003
  • Commodaro AG, Peron JPS, Lopes CT, et al. Evaluation of experimental autoimmune uveitis in mice treated with FTY720. Invest Ophthalmol Vis Sci. 2010;51(5):2568. doi:10.1167/iovs.09-4769
  • Okazaki H, Hirata D, Kamimura T, et al. Effects of FTY720 in MRL-lpr/lpr mice: therapeutic potential in systemic lupus erythematosus. J Rheumatol. 2002;29(4):707–716.
  • Keul P, Tölle M, Lucke S, et al. The Sphingosine-1-Phosphate Analogue FTY720 reduces atherosclerosis in apolipoprotein E–deficient mice. Arteriosclerosis Thrombosis Vasc Biol. 2007;27(3):607–613. doi:10.1161/01.ATV.0000254679.42583.88
  • Fayyaz S, Japtok L, Kleuser B. Divergent role of Sphingosine 1-phosphate on insulin resistance. Cell Physiol Biochem. 2014;34(1):134–147. doi:10.1159/000362990
  • He Q, Bo J, Shen R, et al. S1P signaling pathways in pathogenesis of type 2 diabetes. J Diabetes Res. 2021;2021:1–12. doi:10.1155/2021/1341750
  • Zhao Z, Choi J, Zhao C, Ma ZA. FTY720 normalizes hyperglycemia by stimulating β-cell in vivo regeneration in db/db mice through regulation of cyclin D3 and p57KIP2. J Biol Chem. 2012;287(8):5562–5573. doi:10.1074/jbc.M111.305359
  • Moon H, Chon J, Joo J, et al. FTY720 preserved islet β -cell mass by inhibiting apoptosis and increasing survival of β -cells in db/db mice: FTY720 preserves islet β -cell in mice. Diabetes Metab Res Rev. 2013;29(1):19–24. doi:10.1002/dmrr.2341
  • Kobayashi K, Sasase T, Ishii Y, et al. The sphingosine‐1‐phosphate receptor modulator, FTY720, prevents the incidence of diabetes in Spontaneously Diabetic Torii rats. Clin Exp Pharma Physio. 2021;48(6):869–876. doi:10.1111/1440-1681.13405
  • Wang Y, Wang X, An A, et al. Immunomodulator FTY720 improves glucose homeostasis and diabetic complications by rejuvenation of β ‐cell function in nonhuman primate model of diabetes. Fund Clin Pharm. 2022;36(4):699–711. doi:10.1111/fcp.12760
  • Kendall MR, Hupfeld CJ. FTY720, a sphingosine‐1‐phosphate receptor modulator, reverses high‐fat diet–induced weight gain, insulin resistance and adipose tissue inflammation in C57BL/6 mice. Diabetes Obesity Metab. 2008;10(9):802–805. doi:10.1111/j.1463-1326.2008.00910.x
  • Bruce CR, Risis S, Babb JR, et al. The sphingosine-1-phosphate analog FTY720 reduces muscle ceramide content and improves glucose tolerance in high fat-fed male mice. Endocrinology. 2013;154(1):65–76. doi:10.1210/en.2012-1847
  • Yang Z, Chen M, Fialkow LB, et al. The immune modulator FYT720 prevents autoimmune diabetes in nonobese diabetic mice☆. Clin Immunol. 2003;107(1):30–35. doi:10.1016/S1521-6616(02)00054-2
  • Penaranda C, Tang Q, Ruddle NH, Bluestone JA. Prevention of diabetes by FTY720-mediated stabilization of peri-islet tertiary lymphoid organs. Diabetes. 2010;59(6):1461–1468. doi:10.2337/db09-1129
  • Jörns A, Rath KJ, Terbish T, et al. Diabetes prevention by immunomodulatory FTY720 Treatment in the LEW.1AR1-iddm rat despite immune cell activation. Endocrinology. 2010;151(8):3555–3565. doi:10.1210/en.2010-0202
  • Fan L, Yan H. FTY720 attenuates retinal inflammation and protects blood–retinal barrier in diabetic rats. Invest Ophthalmol Vis Sci. 2016;57(3):1254. doi:10.1167/iovs.15-18658
  • Abdullah CS, Li Z, Wang X, Jin ZQ. Depletion of T lymphocytes ameliorates cardiac fibrosis in streptozotocin-induced diabetic cardiomyopathy. Int Immunopharmacol. 2016;39:251–264. doi:10.1016/j.intimp.2016.07.027
  • Xu H, Jin Y, Ni H, Hu S, Zhang Q. Sphingosine-1-phosphate receptor agonist, FTY720, restores coronary flow reserve in diabetic rats. Circ J. 2014;78(12):2979–2986. doi:10.1253/circj.CJ-14-0521
  • English D, Welch Z, Kovala AT, et al. Sphingosine 1‐phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB j. 2000;14(14):2255–2265. doi:10.1096/fj.00-0134com
  • Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–1136. doi:10.1161/01.CIR.74.5.1124
  • Rana A, Sharma S. Mechanism of sphingosine-1-phosphate induced cardioprotection against I/R injury in diabetic rat heart: possible involvement of glycogen synthase kinase 3 β and mitochondrial permeability transition pore. Clin Exp Pharmacol Physiol. 2016;43(2):166–173. doi:10.1111/1440-1681.12516
  • Becher PM, Lindner D, Fröhlich M, Savvatis K, Westermann D, Tschöpe C. Assessment of cardiac inflammation and remodeling during the development of streptozotocin-induced diabetic cardiomyopathy in vivo: a time course analysis. IntJ Mol Med. 2013;32(1):158–164. doi:10.3892/ijmm.2013.1368
  • Ivanova E, Kovacs-Oller T, Sagdullaev BT. Vascular pericyte impairment and connexin43 gap junction deficit contribute to vasomotor decline in diabetic retinopathy. J Neurosci. 2017;37(32):7580–7594. doi:10.1523/JNEUROSCI.0187-17.2017
  • Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR. Diabetic retinopathy: breaking the barrier. Pathophysiology. 2017;24(4):229–241. doi:10.1016/j.pathophys.2017.07.001
  • Simó R, Simó-Servat O, Bogdanov P, Hernández C. Neurovascular unit: a new target for treating early stages of diabetic retinopathy. Pharmaceutics. 2021;13(8):1320. doi:10.3390/pharmaceutics13081320
  • Whitcup SM, Cidlowski JA, Csaky KG, Ambati J. Pharmacology of Corticosteroids for Diabetic Macular Edema. Invest Ophthalmol Vis Sci. 2018;59(1):1. doi:10.1167/iovs.17-22259
  • Stewart MW. Treatment of diabetic retinopathy: recent advances and unresolved challenges. World J Diabetes. 2016;7(16):333. doi:10.4239/wjd.v7.i16.333
  • Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regen Res. 2023;18(5):976. doi:10.4103/1673-5374.355743
  • Chernykh V, Varvarinsky E, Smirnov E, Chernykh D, Trunov A. Proliferative and inflammatory factors in the vitreous of patients with proliferative diabetic retinopathy. Indian J Ophthalmol. 2015;63(1):33. doi:10.4103/0301-4738.151464
  • Boss JD, Singh PK, Pandya HK, et al. Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(12):5594. doi:10.1167/iovs.17-21973
  • Capitão M, Soares R. Angiogenesis and inflammation crosstalk in diabetic retinopathy. J of Cellular Biochem. 2016;117(11):2443–2453. doi:10.1002/jcb.25575
  • Vinores SA, Xiao WH, Shen J, Campochiaro PA. TNF-α is critical for ischemia-induced leukostasis, but not retinal neovascularization nor VEGF-induced leakage. J Neuroimmunol. 2007;182(1–2):73–79. doi:10.1016/j.jneuroim.2006.09.015
  • Huang H, Gandhi JK, Zhong X, et al. TNFα Is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Invest Ophthalmol Vis Sci. 2011;52(3):1336. doi:10.1167/iovs.10-5768
  • Yun JH. Interleukin-1β induces pericyte apoptosis via the NF-κB pathway in diabetic retinopathy. Biochem Biophys Res Commun. 2021;546:46–53. doi:10.1016/j.bbrc.2021.01.108
  • Yao Y, Li R, Du J, Long L, Li X, Luo N. Interleukin-6 and diabetic retinopathy: a systematic review and meta-analysis. Curr Eye Res. 2019;44(5):564–574. doi:10.1080/02713683.2019.1570274
  • Miyamoto K, Ogura Y. Pathogenetic potential of leukocytes in diabetic retinopathy. Semi Ophthalmol. 1999;14(4):233–239. doi:10.3109/08820539909069542
  • Maisto R, Gesualdo C, Trotta MC, et al. Melanocortin receptor agonists MCR 1-5 protect photoreceptors from high-glucose damage and restore antioxidant enzymes in primary retinal cell culture. J Cell Mol Med. 2017;21(5):968–974. doi:10.1111/jcmm.13036
  • Rossi S, Maisto R, Gesualdo C, et al. Activation of melanocortin receptors MC 1 and MC 5 attenuates retinal damage in experimental diabetic retinopathy. Mediators Inflammation. 2016;2016:1–13. doi:10.1155/2016/7368389
  • Danta CC, Boa AN, Bhandari S, Sathyapalan T, Xu SZ. Recent advances in drug discovery for diabetic kidney disease. Expert Opin Drug Discov. 2021;16(4):447–461. doi:10.1080/17460441.2021.1832077
  • Koch A, Pfeilschifter J, Huwiler A. Sphingosine 1-phosphate in renal diseases. Cell Physiol Biochem. 2013;31(6):745–760. doi:10.1159/000350093
  • Deng Y, Lan T, Huang J, Huang H. Sphingosine Kinase-1/sphingosine 1-phosphate pathway in diabetic nephropathy. Chin Med J. 2014;127(16):3004–3010.
  • Kurano M, Tsukamoto K, Shimizu T, Hara M, Yatomi Y. Apolipoprotein M/sphingosine 1-phosphate protects against diabetic nephropathy. Transl Res. 2023;258:16–34. doi:10.1016/j.trsl.2023.02.004
  • Awad AS, Ye H, Huang L, et al. Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol. 2006;290(6):F1516–F1524. doi:10.1152/ajprenal.00311.2005
  • Bajwa A, Jo SK, Ye H, et al. Activation of Sphingosine-1-Phosphate 1 receptor in the proximal tubule protects against ischemia-reperfusion injury. J Am Soc Nephrol. 2010;21(6):955–965. doi:10.1681/ASN.2009060662
  • Awad AS, Rouse MD, Khutsishvili K, et al. Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes. Kidney Int. 2011;79(10):1090–1098. doi:10.1038/ki.2010.544
  • Esposito K, Maiorino MI, Bellastella G. Diabetes and sexual dysfunction: current perspectives. Diab Metab Synd Obes. 2014;95. doi:10.2147/DMSO.S36455
  • Cui K, Ruan Y, Wang T, et al. FTY720 supplementation partially improves erectile dysfunction in rats with streptozotocin-induced type 1 diabetes through inhibition of endothelial dysfunction and corporal fibrosis. J Sex Med. 2017;14(3):323–335. doi:10.1016/j.jsxm.2017.01.006
  • Ennis GE, Saelzler U, Umpierrez GE, Moffat SD. Prediabetes and working memory in older adults. Brain Neurosci Adv. 2020;4:239821282096172. doi:10.1177/2398212820961725
  • Miguez A, García-Díaz Barriga G, Brito V, et al. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75 NTR up-regulation and astrocyte-mediated inflammation. Hum Mol Genet. 2015;24(17):4958–4970. doi:10.1093/hmg/ddv218
  • Hunter SF, Bowen JD, Reder AT. The direct effects of fingolimod in the central nervous system: implications for relapsing multiple sclerosis. CNS Drugs. 2016;30(2):135–147. doi:10.1007/s40263-015-0297-0
  • Bilbo S, Stevens B. Microglia: the brain’s first responders. Cerebrum. 2017;2017:14–17.
  • Rom S, Zuluaga-Ramirez V, Gajghate S, et al. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both Diabetes Mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol. 2019;56(3):1883–1896. doi:10.1007/s12035-018-1195-5
  • Sood A, Fernandes V, Preeti K, Khatri DK, Singh SB. Sphingosine 1 phosphate lyase inhibition rescues cognition in diabetic mice by promoting anti-inflammatory microglia. Behav Brain Res. 2023;446:114415. doi:10.1016/j.bbr.2023.114415
  • Lucaciu A, Brunkhorst R, Pfeilschifter J, Pfeilschifter W, Subburayalu J. The S1P–S1PR axis in neurological disorders—insights into current and future therapeutic perspectives. Cells. 2020;9(6):1515. doi:10.3390/cells9061515