163
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Serum Fibroblast Growth Factor 21 Level After an Oral Fat Tolerance Test is Related to Postprandial Free Fatty Acid Level

ORCID Icon, , , , , , , & show all
Pages 1567-1576 | Received 10 Mar 2023, Accepted 25 May 2023, Published online: 01 Jun 2023

References

  • Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627–1635.
  • Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: interaction between energy metabolism and stress responses. Ageing Res Rev. 2017;37:79–93.
  • Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654–667.
  • Demant M, Suppli MP, Foghsgaard S, et al. Metabolic effects of 1-week binge drinking and fast food intake during Roskilde Festival in young healthy male adults. Eur J Endocrinol. 2021;185(1):23–32.
  • Solon-Biet SM, Cogger VC, Pulpitel T, et al. Defining the Nutritional and Metabolic Context of FGF21 Using the Geometric Framework. Cell Metab. 2016;24(4):555–565.
  • Laeger T, Henagan TM, Albarado DC, et al. FGF21 is an endocrine signal of protein restriction. J Clin Invest. 2014;124(9):3913–3922.
  • Xu C, Markova M, Seebeck N, et al. High-protein diet more effectively reduces hepatic fat than low-protein diet despite lower autophagy and FGF21 levels. Liver Int. 2020;40(12):2982–2997.
  • Samms RJ, Lewis JE, Norton L, et al. FGF21 Is an Insulin-Dependent Postprandial Hormone in Adult Humans. J Clin Endocr Metab. 2017;102(10):3806–3813.
  • Mai K, Andres J, Biedasek K, et al. Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21. Diabetes. 2009;58(7):1532–1538.
  • Matikainen N, Taskinen MR, Stennabb S, et al. Decrease in circulating fibroblast growth factor 21 after an oral fat load is related to postprandial triglyceride-rich lipoproteins and liver fat. Eur J Endocrinol. 2011;166(3):487–492.
  • Hou X, Guan Y, Tang Y, et al. Correlation study of the relationships between nonalcoholic fatty liver disease and serum triglyceride concentration after an oral fat tolerance test. Lipids Health Dis. 2021;20(1):54.
  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419.
  • Hu DY. New guidelines and evidence for the prevention and treatment of dyslipidemia and atherosclerotic cardiovascular disease in China. Zhonghua Xin Xue Guan Bing Za Zhi. 2016;44:826–827.
  • Kolovou GD, Mikhailidis DP, Kovar J, et al. Assessment and clinical relevance of non-fasting and postprandial triglycerides: an expert panel statement. Curr Vasc Pharmacol. 2011;9:258–270.
  • Lipke K, Kubis-Kubiak A, Piwowar A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells. 2022;11(5). doi:10.3390/cells11050844
  • Carpentier AC. Postprandial fatty acid metabolism in the development of lipotoxicity and type 2 diabetes. Diabetes Metab. 2008;34:97–107.
  • Normand-Lauzière F, Frisch F, Labbé SM, et al. Increased postprandial nonesterified fatty acid appearance and oxidation in type 2 diabetes is not fully established in offspring of diabetic subjects. PLoS One. 2010;5:e10956.
  • Montastier É, Ye RZ, Noll C, et al. Increased postprandial nonesterified fatty acid efflux from adipose tissue in prediabetes is offset by enhanced dietary fatty acid adipose trapping. Am J Physiol-Endoc M. 2021;320(6):E1093–E1106.
  • Sprangers F, Romijn JA, Endert E, Ackermans MT, Sauerwein HP. The role of free fatty acids (FFA) in the regulation of intrahepatic fluxes of glucose and glycogen metabolism during short-term starvation in healthy humans. Eur J Gastroen Hepat. 2001;13(12):A17–A18.
  • van Oostrom AJ, van Dijk H, Verseyden C, et al. Addition of glucose to an oral fat load reduces postprandial free fatty acids and prevents the postprandial increase in complement component 3. Am J Clin Nutr. 2004;79(3):510–515.
  • Henry RW, Stout RW, Buchanan KD. The gastro-entero-pancreatic hormone secretion after a mixed meal in normal subjects before and after a 72 hour period of starvation. Diabete Metab. 1979;5(1):21–26.
  • Fielding B. Tracing the fate of dietary fatty acids: metabolic studies of postprandial lipaemia in human subjects. Proceedings of the Nutrition Society. 2011;70(3):342–350.
  • Miles JM, Wooldridge D, Grellner WJ, et al. Nocturnal and postprandial free fatty acid kinetics in normal and type 2 diabetic subjects: effects of insulin sensitization therapy. Diabetes. 2003;52:675–681.
  • Carpentier AC, Frisch F, Cyr D, et al. On the suppression of plasma nonesterified fatty acids by insulin during enhanced intravascular lipolysis in humans. Am J Physiol Endocrinol Metab. 2005;289:E849–E856.
  • Brassard P, Frisch F, Lavoie F, et al. Impaired plasma nonesterified fatty acid tolerance is an early defect in the natural history of type 2 diabetes. J Clin Endocrinol Metab. 2008;93:837–844.
  • Boquist S, Hamsten A, Karpe F, Ruotolo G. Insulin and non-esterified fatty acid relations to alimentary lipaemia and plasma concentrations of postprandial triglyceride-rich lipoproteins in healthy middle-aged men. Diabetologia. 2000;43(2):185–193.
  • Inagaki T, Dutchak P, Zhao G, Ding X. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5(6):415–425.
  • Xiao F, Shi X, Huang P, et al. Dose-response relationship between serum fibroblast growth factor 21 and liver fat content in non-alcoholic fatty liver disease. Diabetes Metab. 2020;47(6):101221.
  • Lui DTW, Lee CH, Chau VWK. Potential role of fibroblast growth factor 21 in the deterioration of bone quality in impaired glucose tolerance. J Endocrinol Invest. 2020;44(3):523–530.
  • Zhang X, Yeung DC, Karpisek M, et al. Serum FGF21 Levels Are Increased in Obesity and Are Independently Associated With the Metabolic Syndrome inHumans. Diabetes. 2008;57(5):1246–1253.
  • Vamvini MT, Hamnvik OP, Sahin-Efe A, et al. Differential Effects of Oral and Intravenous Lipid Administration on Key Molecules Related to Energy Homeostasis. J Clin Endocr Metab. 2016;101(5):1989–1997.
  • Laeger T, Castaño-Martinez T, Werno MW, et al. Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes. Diabetologia. 2018;61(6):1459–1469.
  • Hill CM, Berthoud HR, Münzberg H, Morrison CD. Homeostatic sensing of dietary protein restriction: a case for FGF21. Front Neuroendocrin. 2018;51:125–131.
  • McCullough D, Harrison T, Lane K, et al. The effect of a low carbohydrate high fat diet on emerging biochemical markers of cardiometabolic risk. P Nutr Soc. 2020;79(OCE2). doi:10.1017/s0029665120004796
  • Herpich C, Haß U, Kochlik B, et al. Postprandial dynamics and response of fibroblast growth factor 21 in older adults. Clin Nutr. 2021;40(6):3765–3771.
  • Mai K, Bobbert T, Groth C, et al. Physiological modulation of circulating FGF21: relevance of free fatty acids and insulin. Am J Physiol-Endoc M. 2010;299(1):E126–130.
  • Yu H, Xia F, Lam KS, et al. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin Chem. 2011;57(5):691–700.
  • Qiu H, Song E, Hu Y, et al. Exacerbates Nonalcoholic Fatty Liver Disease Through Autocrine Inhibition of the PPARα/FGF21 Axis. Cell Mol Gastroenterol Hepatol. 2022;14(5):1003–1023.