106
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets

, ORCID Icon & ORCID Icon
Pages 2419-2456 | Received 16 Jan 2024, Accepted 07 May 2024, Published online: 12 Jun 2024

References

  • Egan B, Zierath J. Zierath Juleen R. Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metab. 2013;17(2):162–184. doi:10.1016/j.cmet.2012.12.012
  • Metallo Christian M, Vander Heiden Matthew G. Understanding Metabolic Regulation and Its Influence on Cell Physiology. Molecular Cell. 2013;49(3):388–398. doi:10.1016/j.molcel.2013.01.018
  • Affourtit C. Mitochondrial involvement in skeletal muscle insulin resistance: a case of imbalanced bioenergetics. Biochimica et Biophysica Acta. 2016;1857(10):1678–1693.
  • Voet D, Voet J. Biochemistry. 4th ed. New York: Wiley & Sons; 2011.
  • Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9(1):25–53. doi:10.2174/157339913804143225
  • Hædersdal S, Lund A, Knop FK, Vilsbøll T. The Role of Glucagon in the Pathophysiology and Treatment of Type 2 Diabetes. Mayo Clin Proc. 2018;93(2):217–239. doi:10.1016/j.mayocp.2017.12.003
  • Aronoff SL, Berkowitz K, Shreiner B, Want L. Glucose Metabolism and Regulation: beyond Insulin and Glucagon. Diabetes Spectr. 2004;17(3):183–190. doi:10.2337/diaspect.17.3.183
  • Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA. Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract. 2011;93:S52–S59.
  • Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016;48(3):e219–e219.
  • Brereton MF, Vergari E, Zhang Q, Alpha- CA. Delta- and PP-cells: are They the Architectural Cornerstones of Islet Structure and Co-ordination?. J Histochem Cytochem. 2015;63(8):575–591. doi:10.1369/0022155415583535
  • De Graaf C, Donnelly D, Wootten D, et al. Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: a Long March to Therapeutic Successes. Pharmacol Rev. 2016;68(4):954–1013. doi:10.1124/pr.115.011395
  • Forbes JM, Cooper ME. Mechanisms of Diabetic Complications. Physiol Rev. 2013;93(1):137–188. doi:10.1152/physrev.00045.2011
  • Creutzfeldt W. The [pre-] history of the incretin concept. Regul Pept. 2005;128(2):87–91. doi:10.1016/j.regpep.2004.08.004
  • Holst JJ. From the Incretin Concept and the Discovery of GLP-1 to Today’s Diabetes Therapy. Front Endocrinol. 2019;10:260.
  • Graaf C, Donnelly D, Wootten D, et al. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: a Long March to Therapeutic Successes. Pharmacol Rev. 2016;68(4):954–1013.
  • Goldstein B, Wieland D. Type 2 Diabetes: Principles and Practice. Second Edition. ed. New York: Informa Healthcare; 2007.
  • Salehi M, Aulinger B, D’Alessio D. Effect of Glycemia on Plasma Incretins and the Incretin Effect During Oral Glucose Tolerance Test. Diabetes. 2012;61(11):2728–2733. doi:10.2337/db11-1825
  • Reed J, Bain S, Kanamarlapudi V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab Syndr Obes. 2021;14:3567–3602. doi:10.2147/DMSO.S319895
  • Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–149. doi:10.1016/j.diabres.2013.11.002
  • Hinney A, Körner A, Fischer-Posovszky P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits. Nat Rev Endocrinol. 2022;18(10):623–637. doi:10.1038/s41574-022-00716-0
  • Doulla M, McIntyre AD, Hegele RA, Gallego PH. A novel MC4R mutation associated with childhood-onset obesity: a case report. Paediatrics Child Health. 2014;19(10):515–518. doi:10.1093/pch/19.10.515
  • Telci Caklili O, Cesur M, Mikhailidis DP, Rizzo M. Novel Anti-obesity Therapies and their Different Effects and Safety Profiles: a Critical Overview. Int J Med. 2023;16:1767–1774. doi:10.2147/DMSO.S392684
  • Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov. 2022;21(3):201–223. doi:10.1038/s41573-021-00337-8
  • Gulinac M, Miteva DG, Peshevska-Sekulovska M, et al. Long-term effectiveness, outcomes and complications of bariatric surgery. World j Clin Cases. 2023;11(19):4504–4512. doi:10.12998/wjcc.v11.i19.4504
  • Ozougwu JC, Obimba KC, Belonwu CD, Unakalamba CB. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol. 2013;4:46–57. doi:10.5897/JPAP2013.0001
  • Thompson A, Kanamarlapudi V. Type 2 Diabetes Mellitus and Glucagon Like Peptide-1 Receptor Signalling. Clin Exp Pharmacol. 2013;3.
  • Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Chapter 1: epidemiology of Type 1 Diabetes. Endocrinol Metab Clinics North Am. 2010;39(3):481–497. doi:10.1016/j.ecl.2010.05.011
  • Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–1083. doi:10.1016/S0140-6736(13)62154-6
  • Leahy JL. Pathogenesis of Type 2 Diabetes Mellitus. Archiv Med Res. 2005;36(3):197–209. doi:10.1016/j.arcmed.2005.01.003
  • Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus[mdash]present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–236. doi:10.1038/nrendo.2011.183
  • Raz I. Guideline Approach to Therapy in Patients With Newly Diagnosed Type 2 Diabetes. Diabetes Care. 2013;36(Suppl 2):S139–S144. doi:10.2337/dcS13-2035
  • Reed J, Bain S, Kanamarlapudi V. Recent advances in understanding the role of glucagon-like peptide 1 [version 1; peer review: 2 approved]. F1000Research. 2020;9(239):1–14. doi:10.12688/f1000research.20602.1
  • Moede T, Leibiger IB, Berggren P-O. Alpha cell regulation of beta cell function. Diabetologia. 2020;63(10):2064–2075. doi:10.1007/s00125-020-05196-3
  • Quesada I, Tudurí E, Ripoll C, Nadal Á. Physiology of the pancreatic α-cell and glucagon secretion: role in glucose homeostasis and diabetes. J Endocrinol. 2008;199(1):5–19. doi:10.1677/JOE-08-0290
  • Komatsu M, Takei M, Ishii H, Sato Y. Glucose-stimulated insulin secretion: a newer perspective. J Diabetes Invest. 2013;4(6):511–516. doi:10.1111/jdi.12094
  • Qaid MM, Abdelrahman MM. Role of insulin and other related hormones in energy metabolism—A review. Cogent Food Agric. 2016;2(1):1267691. doi:10.1080/23311932.2016.1267691
  • Jain R, Lammert E. Cell–cell interactions in the endocrine pancreas. Diabetes Obesity Metab. 2009;11(s4):159–167. doi:10.1111/j.1463-1326.2009.01102.x
  • Ionescu-Tirgoviste C, Gagniuc PA, Gubceac E, et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci Rep. 2015;5(1):14634. doi:10.1038/srep14634
  • Pugliese A. The Insulin Gene In Type 1 Diabetes. IUBMB Life. 2005;57(7):463–468. doi:10.1080/15216540500163301
  • Wilcox G. Insulin and Insulin Resistance. Clin Biochemist Rev. 2005;26(2):19–39.
  • Affourtit C, Brand MD. On the role of uncoupling protein-2 in pancreatic beta cells. Biochimica et Biophysica Acta. 2008;1777(7–8):973–979. doi:10.1016/j.bbabio.2008.03.022
  • Affourtit C, Jastroch M, Brand MD. Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species. Free Radic Biol Med. 2011;50(5):609–616. doi:10.1016/j.freeradbiomed.2010.12.020
  • Patzelt C, Labrecque AD, Duguid JR, et al. Detection and kinetic behavior of preproinsulin in pancreatic islets. Proc Natl Acad Sci USA. 1978;75(3):1260–1264. doi:10.1073/pnas.75.3.1260
  • Boland BB, Rhodes CJ, Grimsby JS. The dynamic plasticity of insulin production in β-cells. Mol Metabol. 2017;6(9):958–973. doi:10.1016/j.molmet.2017.04.010
  • Udell JA, Bhatt DL, Braunwald E, et al. Saxagliptin and Cardiovascular Outcomes in Patients With Type 2 Diabetes and Moderate or Severe Renal Impairment: observations From the SAVOR-TIMI 53 Trial. Diabetes Care. 2015;38(4):696. doi:10.2337/dc14-1850
  • Rhodes CJ. Type 2 Diabetes-A Matter of ß-Cell Life and Death?. Science. 2005;307(5708):380. doi:10.1126/science.1104345
  • Matschinsky F, Liang Y, Kesavan P, et al. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Investig. 1993;92(5):2092–2098. doi:10.1172/JCI116809
  • Affourtit C. Brand Martin D. Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion. Biochem. J. 2008;409(1):199–204. doi:10.1042/BJ20070954
  • Rolfe DF, Brand MD. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol Cell Physiol. 1996;271(4):C1380–C1389. doi:10.1152/ajpcell.1996.271.4.C1380
  • Robson-Doucette CA, Sultan S, Allister EM, et al. β-Cell Uncoupling Protein 2 Regulates Reactive Oxygen Species Production, Which Influences Both Insulin and Glucagon Secretion. Diabetes. 2011;60(11):2710–2719. doi:10.2337/db11-0132
  • Ahmed Alfar E, Kirova D, Konantz J, Birke S, Mansfeld J, Ninov N. Distinct Levels of Reactive Oxygen Species Coordinate Metabolic Activity with Beta-cell Mass Plasticity. Sci Rep. 2017;7(1):3994. doi:10.1038/s41598-017-03873-9
  • Lei XG, Vatamaniuk MZ. Two tales of antioxidant enzymes on β cells and diabetes. Antioxidants Redox Signaling. 2011;14(3):489–503. doi:10.1089/ars.2010.3416
  • Henquin J-C. The dual control of insulin secretion by glucose involves triggering and amplifying pathways in beta-cells. Diabetes Res Clin Pract. 2011;93:S27–S31.
  • Newsholme P, Krause M. Nutritional Regulation of Insulin Secretion: implications for Diabetes. Clin Biochem Rev. 2012;33(2):35–47.
  • Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis – roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci. 2009;122(7):893. doi:10.1242/jcs.034355
  • Rutter GA. Nutrient–secretion coupling in the pancreatic islet β-cell: recent advances. Mol Aspect Med. 2001;22(6):247–284. doi:10.1016/S0098-2997(01)00013-9
  • Detimary P, Dejonghe S, Ling Z, Pipeleers D, Schuit F, Henquin JC. The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets. J Biol Chem. 1998;273:1–4. doi:10.1074/jbc.273.51.33905
  • Ronner P, Naumann CM, Friel E. Effects of glucose and amino acids on free ADP in ßHC9 insulin-secreting cells. Diabetes. 2001;50:1–10. doi:10.2337/diabetes.50.2.291
  • Zhang T, Li C. Mechanisms of amino acid-stimulated insulin secretion in congenital hyperinsulinism. Acta Biochim. Biophys. Sin. 2013;45(1):36–43. doi:10.1093/abbs/gms107
  • Thorens B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obesity Metab. 2014;16(S1):87–95. doi:10.1111/dom.12346
  • Gromada J, Hughes TE. Ringing the dinner bell for insulin: muscarinic M3 receptor activity in the control of pancreatic β cell function. Cell Metab. 2006;3(6):390–392. doi:10.1016/j.cmet.2006.05.004
  • Lasschuijt MP, Mars M, de Graaf C, Smeets PAM. Endocrine Cephalic Phase Responses to Food Cues: a Systematic Review. Adv. Nutr. 2020;11(5):1364–1383. doi:10.1093/advances/nmaa059
  • Teff KL. How neural mediation of anticipatory and compensatory insulin release helps us tolerate food. Physiol Behav. 2011;103(1):44–50. doi:10.1016/j.physbeh.2011.01.012
  • Marliss EB, Vranic M. Intense Exercise Has Unique Effects on Both Insulin Release and Its Roles in Glucoregulation. Diabetes. 2002;51(suppl 1):S271–S283. doi:10.2337/diabetes.51.2007.S271
  • Kong CC, Cheng JD, Wang W. Neurotransmitters regulate β cells insulin secretion: a neglected factor. World j Clin Cases. 2023;11(28):6670–6679. doi:10.12998/wjcc.v11.i28.6670
  • Leiss V, Flockerzie K, Novakovic A, et al. Insulin secretion stimulated by L-arginine and its metabolite L-ornithine depends on Gαi2. Am J Physio. 2014;307(9):E800–E812. doi:10.1152/ajpendo.00337.2014
  • Yang J, Chi Y, Burkhardt BR, Guan Y, Wolf BA. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev. 2010;68(5):270–279. doi:10.1111/j.1753-4887.2010.00282.x
  • Yanagisawa Y. How dietary amino acids and high protein diets influence insulin secretion. Physiological Reports. 2023;11(2):e15577. doi:10.14814/phy2.15577
  • Shah Z, Kampfrath T, Deiuliis JA, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation. 2011;124(21):2338–2349. doi:10.1161/CIRCULATIONAHA.111.041418
  • Henquin J-C. Paracrine and autocrine control of insulin secretion in human islets: evidence and pending questions. Am J Physiol Endocrinol Metab. 2020;320(1):E78–E86. doi:10.1152/ajpendo.00485.2020
  • Rhodes CJ, White MF, Leahy JL, Kahn SE. Direct Autocrine Action of Insulin on β-Cells: does It Make Physiological Sense?. Diabetes. 2013;62(7):2157–2163. doi:10.2337/db13-0246
  • Wicksteed B, Alarcon C, Briaud I, Lingohr MK, Rhodes CJ. Glucose-induced Translational Control of Proinsulin Biosynthesis Is Proportional to Preproinsulin mRNA Levels in Islet β-Cells but Not Regulated via a Positive Feedback of Secreted Insulin. J Biol Chem. 2003;278(43):42080–42090. doi:10.1074/jbc.M303509200
  • Hunter SJ, Garvey WT. Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system 1. Am j Med. 1998;105(4):331–345. doi:10.1016/S0002-9343(98)00300-3
  • Huang S, Czech MP. The GLUT4 Glucose Transporter. Cell Metab. 2007;5(4):237–252. doi:10.1016/j.cmet.2007.03.006
  • Mandarino LJ, Printz RL, Cusi KA, et al. Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle. Am J Physio. 1995;269(4):E701–E708. doi:10.1152/ajpendo.1995.269.4.E701
  • Rossetti L, Hu M. Skeletal muscle glycogenolysis is more sensitive to insulin than is glucose transport/phosphorylation. Relation to the insulin-mediated inhibition of hepatic glucose production. J Clin Investig. 1993;92(6):2963–2974. doi:10.1172/JCI116919
  • Kawamori D, Kurpad AJ, Hu J, et al. Insulin Signaling in α-cells Modulates Glucagon Secretion in vivo. Cell Metab. 2009;9(4):350–361. doi:10.1016/j.cmet.2009.02.007
  • Xu GG, Rothenberg PL. Insulin Receptor Signaling in the β-Cell Influences Insulin Gene Expression and Insulin Content: evidence for Autocrine β-Cell Regulation. Diabetes. 1998;47(8):1243–1252. doi:10.2337/diab.47.8.1243
  • Skovsø S, Panzhinskiy E, Kolic J, et al. Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance. Nat Commun. 2022;13(1):735. doi:10.1038/s41467-022-28039-8
  • Thomas DM, Udagawa N, Hards DK, et al. Insulin receptor expression in primary and cultured osteoclast-like cells. Bone. 1998;23(3):181–186. doi:10.1016/S8756-3282(98)00095-7
  • Stockhorst U, de Fries D, Steingrueber H-J, Scherbaum WA. Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans. Physiol Behav. 2004;83(1):47–54. doi:10.1016/S0031-9384(04)00348-8
  • Agrawal R, Reno CM, Sharma S, Christensen C, Huang Y, Fisher SJ. Insulin action in the brain regulates both central and peripheral functions. Am J Physiol Endocrinol Metab. 2021;321(1):E156–E163. doi:10.1152/ajpendo.00642.2020
  • Gerozissis K. Brain insulin and feeding: a bi-directional communication. Eur. J. Pharmacol. 2004;490(1–3):59–70. doi:10.1016/j.ejphar.2004.02.044
  • Csajbók ÉA, Tamás G. Cerebral cortex: a target and source of insulin?. Diabetologia. 2016;59(8):1609–1615. doi:10.1007/s00125-016-3996-2
  • Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obesity Rev. 2007;8(1):21–34. doi:10.1111/j.1467-789X.2006.00270.x
  • Paz-Filho G, Mastronardi C, Delibasi T, Wong M-L, Licinio J. Congenital leptin deficiency: diagnosis and effects of leptin replacement therapy. Arquivos brasileiros de endocrinologia e metabologia. 2010;54(8):690–697. doi:10.1590/S0004-27302010000800005
  • Lee B, Shao J. Adiponectin and Energy Homeostasis. Rev Endocr Metab Disord. 2014;15(2):149–156. doi:10.1007/s11154-013-9283-3
  • Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obesity Rev. 2005;6(1):13–21. doi:10.1111/j.1467-789X.2005.00159.x
  • Qiao L, Kinney B, Schaack J, Shao J. Adiponectin Inhibits Lipolysis in Mouse Adipocytes. Diabetes. 2011;60(5):1519–1527. doi:10.2337/db10-1017
  • Kim J-Y, van de Wall E, Laplante M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621–2637. doi:10.1172/JCI31021
  • Haugen F, Jørgensen A, Drevon CA, Trayhurn P. Inhibition by insulin of resistin gene expression in 3T3-L1 adipocytes. FEBS Lett. 2001;507(1):105–108. doi:10.1016/S0014-5793(01)02968-4
  • Jamaluddin MS, Weakley SM, Yao Q, Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 2012;165(3):622–632. doi:10.1111/j.1476-5381.2011.01369.x
  • Hasegawa G, Ohta M, Ichida Y, et al. Increased serum resistin levels in patients with type 2 diabetes are not linked with markers of insulin resistance and adiposity. Acta Diabetologica. 2005;42(2):104–109. doi:10.1007/s00592-005-0187-x
  • Iqbal N, Seshadri P, Stern L, et al. Serum resistin is not associated with obesity or insulin resistance in humans. Eur Rev Med Pharmacol Sci. 2005;9:161–165.
  • Laudes M, Oberhauser F, Schulte DM, et al. Visfatin/PBEF/Nampt and Resistin Expressions in Circulating Blood Monocytes are Differentially Related to Obesity and Type 2 Diabetes in Humans. Horm Metab Res. 2010;42(04):268–273. doi:10.1055/s-0029-1243638
  • Siddiqui K, Scaria Joy S, George TP. Circulating resistin levels in relation with insulin resistance, inflammatory and endothelial dysfunction markers in patients with type 2 diabetes and impaired fasting glucose. EndocrineMetab Sci. 2020;1(3):100059. doi:10.1016/j.endmts.2020.100059
  • Milan G, Granzotto M, Scarda A, et al. Resistin and Adiponectin Expression in Visceral Fat of Obese Rats: effect of Weight Loss. Obesity Res. 2002;10(11):1095–1103.
  • Wu G, Meininger CJ. Nitric oxide and vascular insulin resistance. BioFactors. 2009;35(1):21–27. doi:10.1002/biof.3
  • Sechi L, Bartoli E. Molecular mechanisms of insulin resistance in arterial hypertension. Blood Press Suppl. 1996;1:47–54.
  • Pradhan G, Samson SL, Sun Y. Ghrelin: much more than a hunger hormone. Curr Opin Clin Nutr Metab Care. 2013;16(6):619–624. doi:10.1097/MCO.0b013e328365b9be
  • Yin X, Yin L, Geyang X, Wenjiao A, Zhang W. Ghrelin fluctuation, what determines its production?. Acta Biochim Biophys Sin. 2009;41(3):188–197. doi:10.1093/abbs/gmp001
  • Gagnon J, Anini Y. Insulin and Norepinephrine Regulate Ghrelin Secretion from a Rat Primary Stomach Cell Culture. Endocrinology. 2012;153(8):3646–3656. doi:10.1210/en.2012-1040
  • Tadahiro Kitamura CRK, Accili D. Insulin Receptor Knockout Mice. Annual Review of Physiol. 2003;65(1):313–332. doi:10.1146/annurev.physiol.65.092101.142540
  • Bunner AE, Chandrasekera PC, Barnard ND. Knockout mouse models of insulin signaling: relevance past and future. World J Diabetes. 2014;5(2):146–159. doi:10.4239/wjd.v5.i2.146
  • Zahradka P, Werner J, Yau L. Expression and regulation of the insulin-like growth factor-1 receptor by growing and quiescent H4IIE hepatoma. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1998;1375(1–2):131–139. doi:10.1016/S0005-2736(98)00144-8
  • Kim W, Egan JM. The Role of Incretins in Glucose Homeostasis and Diabetes Treatment. Pharmacol Rev. 2008;60(4):470–512. doi:10.1124/pr.108.000604
  • Holst JJ. The Physiology of Glucagon-like Peptide 1. Physiol Rev. 2007;87(4):1409–1439. doi:10.1152/physrev.00034.2006
  • Donath MY, Burcelin R. GLP-1 Effects on Islets: hormonal, Neuronal, or Paracrine?. Diabetes Care. 2013;36(Suppl 2):S145–S148. doi:10.2337/dcS13-2015
  • Hinnen D. Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes. Diabetes Spectr. 2017;30(3):202. doi:10.2337/ds16-0026
  • Jacobson DA, Wicksteed BL, Philipson LH. The α-Cell Conundrum: ATP-Sensitive K+Channels and Glucose Sensing. Diabetes. 2009;58(2):304–306. doi:10.2337/db08-1618
  • Gylfe E. Glucose Control of Glucagon Secretion: there Is More to It Than KATP Channels. Diabetes. 2013;62(5):1391–1393. doi:10.2337/db13-0193
  • Reed J, Kanamarlapudi V. GLP-1. In: Choi S, editor. Encyclopedia of Signaling Molecules. Cham: Springer International Publishing; 2018:2098–2106.
  • Taborsky GJ. The Physiology of Glucagon. J Diabetes Sci Technol. 2010;4(6):1338–1344. doi:10.1177/193229681000400607
  • Christensen M, Bagger JI, Vilsboll T, Knop FK. The Alpha-Cell as Target for Type 2 Diabetes Therapy. Rev Diabetic Stud. 2011;8(3):369–381. doi:10.1900/RDS.2011.8.369
  • Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physio. 2003;284(4):E671–E678. doi:10.1152/ajpendo.00492.2002
  • Leibiger B, Moede T, Muhandiramlage TP, et al. Glucagon regulates its own synthesis by autocrine signaling. Proc Natl Acad Sci USA. 2012;109(51):20925–20930. doi:10.1073/pnas.1212870110
  • Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschöp MH. The metabolic actions of glucagon revisited. Nat Rev Endocrinol. 2010;6(12):689–697. doi:10.1038/nrendo.2010.187
  • Huypens P, Ling Z, Pipeleers D, Schuit F. Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia. 2000;43(8):1012–1019. doi:10.1007/s001250051484
  • Doyle ME, Egan JM. Mechanisms of Action of GLP-1 in the Pancreas. Pharmacol Ther. 2007;113(3):546–593.
  • Seino Y, Fukushima M, Yabe D. GIP and GLP‐1, the two incretin hormones: similarities and differences. J Diabetes Invest. 2010;1(1–2):8–23. doi:10.1111/j.2040-1124.2010.00022.x
  • Ahrén B, Yamada Y, Seino Y. The mediation by GLP-1 receptors of glucagon-induced insulin secretion revisited in GLP-1 receptor knockout mice. Peptides. 2021;135:170434. doi:10.1016/j.peptides.2020.170434
  • Condon JR. Glucagon in the Treatment of Paget’s Disease of Bone. Br Med J. 1971;4(5789):5789):719–721. doi:10.1136/bmj.4.5789.719
  • Guo H, Sui C, Ge S, et al. Positive association of glucagon with bone turnover markers in type 2 diabetes: a cross-sectional study. Diabetes/Metab Res Rev. 2022;38(6):e3550. doi:10.1002/dmrr.3550
  • Al-Massadi O, Fernø J, Diéguez C, Nogueiras R, Quiñones M. Glucagon Control on Food Intake and Energy Balance. Int J Mol Sci. 2019;20(16):3905. doi:10.3390/ijms20163905
  • Sipos B, Sperveslage J, Anlauf M, et al. Glucagon Cell Hyperplasia and Neoplasia With and Without Glucagon Receptor Mutations. J Clin Endocrinol Metab. 2015;100(5):E783–E788. doi:10.1210/jc.2014-4405
  • Yu R. Pancreatic α-Cell Hyperplasia: facts and Myths. J Clin Endocrinol Metab. 2014;99(3):748–756. doi:10.1210/jc.2013-2952
  • Gelling RW, Du XQ, Dichmann DS, et al. Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA. 2003;100(3):1438–1443. doi:10.1073/pnas.0237106100
  • Hauge-Evans A, Bowe K, Franklin Z, Hassan Z, Jones P. Inhibitory effect of somatostatin on insulin secretion is not mediated via the CNS. J Endocrinol. 2015;225(1):19–26. doi:10.1530/JOE-14-0709
  • Grigoryan M, Kedees MH, Charron MJ, Guz Y, Teitelman G. Regulation of Mouse Intestinal L Cell Progenitors Proliferation by the Glucagon Family of Peptides. Endocrinology. 2012;153(7):3076–3088. doi:10.1210/en.2012-1120
  • Sinclair EM, Yusta B, Streutker C, et al. Glucagon Receptor Signaling Is Essential for Control of Murine Hepatocyte Survival. Gastroenterology. 2015;135(6):2096–2106. doi:10.1053/j.gastro.2008.07.075
  • Krejs G. Physiological role of somatostatin in the digestive tract: gastric acid secretion, intestinal absorption, and motility. Scand J Gastroenterol Suppl. 1986;119(sup119):47–53. doi:10.3109/00365528609087431
  • Lengyel A-MJ. Novel mechanisms of growth hormone regulation: growth hormone-releasing peptides and ghrelin. Braz J Med Biol Res. 2006;39(8):1003–1011. doi:10.1590/S0100-879X2006000800002
  • Barnett P. Somatostatin and somatostatin receptor physiology. Endocrine. 2003;20(3):255–264. doi:10.1385/ENDO:20:3:255
  • Reubi JC, Schaer JC, Markwalder R, Waser B, Horisberger U, Laissue J. Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance. Yale J Biology Med. 1997;70(5–6):471–479.
  • Rutter GA. Regulating Glucagon Secretion: somatostatin in the Spotlight. Diabetes. 2009;58(2):299–301. doi:10.2337/db08-1534
  • Barden N, Lavoie M, Dupont A, Cote J, Cote J. Stimulation of glucagon release by addition of anti-somatostatin serum to islet of Langerhans in vitro. Endocrinology. 1977;101:635–638. doi:10.1210/endo-101-2-635
  • Gerich J, Lorenzi M, Schneider V, et al. Inhibition of pancreatic glucagon responses to arginine by somatostatin in normal man and in insulin-dependent diabetics. Diabetes. 1974;23(11):876–880. doi:10.2337/diab.23.11.876
  • Kr BFC, Moldovan S, Nguyen TH, Watt PC, Walsh J, Gingerich R. Immunoneutralization of somatostatin, insulin, and glucagon causes alterations in islet cell secretion in the isolated perfused human pancreas. Pancreas. 2001;23(3):302–308. doi:10.1097/00006676-200110000-00012
  • Kawai K, Ol IE, Perrelet A, U RH. Circulating somatostatin acts on the islets of Langerhans by way of a somatostatin-poor compartment. Science. 1982;218(4571):477–478. doi:10.1126/science.6126931
  • Cejvan K, Coy DH, Efendic S. Intra-Islet Somatostatin Regulates Glucagon Release via Type 2 Somatostatin Receptors in Rats. Diabetes. 2003;52(5):1176–1181. doi:10.2337/diabetes.52.5.1176
  • Luque R, Kineman R. Gender-Dependent Role of Endogenous Somatostatin in Regulating Growth Hormone-Axis Function in Mice. Endocrinology. 2007;148(12):5998–6006. doi:10.1210/en.2007-0946
  • Hauge-Evans AC, King AJ, Carmignac D, et al. Somatostatin Secreted by Islet δ-Cells Fulfills Multiple Roles as a Paracrine Regulator of Islet Function. Diabetes. 2009;58(2):403–411. doi:10.2337/db08-0792
  • Hauge-Evans A, Bowe J, Franklin Z, Hassan Z, Jones P. Inhibitory effect of somatostatin on insulin secretion is not mediated via the CNS. J Endocrinol. 2015;225(1):19–26.
  • Pais R, Gribble FM, Reimann F. Stimulation of incretin secreting cells. Ther Adv Endocrinol Metab. 2016;7(1):24–42. doi:10.1177/2042018815618177
  • Svendsen B, Holst JJ. Paracrine regulation of somatostatin secretion by insulin and glucagon in mouse pancreatic islets. Jan. 2021;64(1):142–151.
  • Lieverse R, Jansen J, Masclee A, Lamers C. Effects of somatostatin on human satiety. Neuroendocrinology. 1995;61(2):112–116. doi:10.1159/000126831
  • Nishi S, Seino Y, Ishida H, et al. Vagal regulation of insulin, glucagon, and somatostatin secretion in vitro in the rat. J Clin Investig. 1987;79(4):1191–1196. doi:10.1172/JCI112936
  • Floyd JJ, Fajans S, Pek S, Chance R. A newly recognized pancreatic polypeptide; plasma levels in health and disease. Recent Prog Horm Res. 1976;33:519–570. doi:10.1016/b978-0-12-571133-3.50019-2
  • Aragón F, Karaca M, Novials A, Maldonado R, Maechler P, Rubí B. Pancreatic polypeptide regulates glucagon release through PPYR1 receptors expressed in mouse and human alpha-cells. Biochimica et Biophysica Acta. 2015;1850(2):343–351. doi:10.1016/j.bbagen.2014.11.005
  • Fetissov SO, Kopp J, Hökfelt T. Distribution of NPY receptors in the hypothalamus. Neuropeptides. 2004;38(4):175–188. doi:10.1016/j.npep.2004.05.009
  • Dembiński A, Warzecha Z, Ceranowicz P, et al. Influence of central and peripheral administration of pancreatic polypeptide on gastric mucosa growth. J Physiol Pharmacol. 2004;55(1 Pt 2):223–237.
  • Adrian TE, Greenberg GR, Barnes AJ, Christofides ND, Alberti KG, B SR. Effects of pancreatic polypeptide on motilin and circulation metabolites in man. Eur J Clin Invest. 1980;10:235–240. doi:10.1111/j.1365-2362.1980.tb00026.x
  • Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Influence of neuropeptide Y and pancreatic polypeptide on islet function and beta-cell survival. Biochimica et Biophysica Acta. 2017;1861(4):749–758. doi:10.1016/j.bbagen.2017.01.005
  • Kim W, Fiori JL, Shin Y-K, et al. Pancreatic polypeptide inhibits somatostatin secretion. FEBS Lett. 2014;588(17):3233–3239. doi:10.1016/j.febslet.2014.07.005
  • Brunicardi FC, Chaiken RL, Ryan AS, et al. Pancreatic polypeptide administration improves abnormal glucose metabolism in patients with chronic pancreatitis. J Clin Endocrinol Metab. 1996;81(10):3566–3572.
  • Seymour N, Brunicardi F, Chaiken R, et al. Reversal of abnormal glucose production after pancreatic resection by pancreatic polypeptide administration in man. Surgery. 1988;104(2):119–129.
  • Goldstein J, Kirwin J, Seymour N, Trachtenberg J, Rademaker E, Andersen D. Reversal of in vitro hepatic insulin resistance in chronic pancreatitis by pancreatic polypeptide in the rat. Surgery. 1989;106:1132–1133.
  • Jesudason DR, Monteiro MP, McGowan BMC, et al. Low-dose pancreatic polypeptide inhibits food intake in man. Br. J. Nutr. 2007;97(3):426–429. doi:10.1017/S0007114507336799
  • Batterham RL, Le Roux CW, Cohen MA, et al. Pancreatic Polypeptide Reduces Appetite and Food Intake in Humans. J Clin Endocrinol Metab. 2003;88(8):3989–3992. doi:10.1210/jc.2003-030630
  • Berntson GG, Zipf WB, Tm O, Hoffman JA, Chance RE. Pancreatic polypeptide infusions reduce food intake in Prader-Willi syndrome. Peptides. 1993;14(3):497–503. doi:10.1016/0196-9781(93)90138-7
  • Asakawa A, Inui A, Yuzuriha H, et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology. 2003;124(5):1325–1336. doi:10.1016/S0016-5085(03)00216-6
  • Adamska E, Ostrowska L, Górska M, Krętowski A. The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes. Prz Gastroenterol. 2014;9(2):69–76. doi:10.5114/pg.2014.42498
  • Adrian TE, Besterman HS, Mallinson CN, Greenberg GR, Bloom SR. Inhibition of secretin stimulated pancreatic secretion by pancreatic polypeptide. Gut. 1979;20(1):37–40. doi:10.1136/gut.20.1.37
  • Akamizu T, Takaya K, Irako T, et al. Pharmacokinetics, safety, and endocrine and appetite effects of ghrelin administration in young healthy subjects. Eur J Endocrinol. 2004;150(4):447–455. doi:10.1530/eje.0.1500447
  • Yin X, Li Y, Xu G, An W, Zhang W. Ghrelin fluctuation, what determines its production?. Acta Biochim. Biophys. Sin. 2009;41(3):188–197.
  • Müller TD, Nogueiras R, Andermann ML, et al. Ghrelin. Mol Metabol. 2015;4(6):437–460. doi:10.1016/j.molmet.2015.03.005
  • Sato T, Nakamura Y, Shiimura Y, Ohgusu H, Kangawa K, Kojima M. Structure, regulation and function of ghrelin. J Biochem. 2012;151(2):119–128. doi:10.1093/jb/mvr134
  • Date Y, Nakazato M, Murakami N, Kojima M, Kangawa K, Matsukura S. Ghrelin Acts in the Central Nervous System to Stimulate Gastric Acid Secretion. Biochem. Biophys. Res. Commun. 2001;280(3):904–907. doi:10.1006/bbrc.2000.4212
  • DiGruccio MR, Mawla AM, Donaldson CJ, et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol Metabol. 2016;5(7):449–458. doi:10.1016/j.molmet.2016.04.007
  • Churm R, Davies J, Stephens J, Prior S. Ghrelin function in human obesity and type 2 diabetes: a concise review: ghrelin in human obesity and diabetes. Obesity Reviews : an Official Journal of the International Association for the Study of Obesity. 2016;18(2):140–148. doi:10.1111/obr.12474
  • Ahima RS. Ghrelin—a new player in glucose homeostasis?. Cell Metab. 2006;3(5):301–302. doi:10.1016/j.cmet.2006.04.006
  • Lindqvist A, Shcherbina L, Prasad RB, et al. Ghrelin suppresses insulin secretion in human islets and type 2 diabetes patients have diminished islet ghrelin cell number and lower plasma ghrelin levels. Mol Cell Endocrinol. 2020;511:110835. doi:10.1016/j.mce.2020.110835
  • Lv Y, Liang T, Wang G, Li Z. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Biosci Rep. 2018;38(5):BSR20181061. doi:10.1042/BSR20181061
  • Wells T. Ghrelin – defender of fat. Prog Lipid Res. 2009;48(5):257–274. doi:10.1016/j.plipres.2009.04.002
  • Rehfeld JF. The Origin and Understanding of the Incretin Concept. Front Endocrinol. 2018;9:387. doi:10.3389/fendo.2018.00387
  • Moore B. On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochem J. 1906;1:28–38. doi:10.1042/bj0010028
  • Zunz E, LaBarre J. Hyperinsulinémie consécutive a l’injection de solution de secrétine non hypotensive. C R Soc Biol. 1928;98:1435–1438.
  • La Barre J. Sur les possibilite’sd’un traitement du diabète par l’incrétine. Bull Acad R Med Belg. 1932;12:14.
  • Elrick H, Stimmler L, Hlad CJ, Arai Y. PLASMA INSULIN RESPONSE TO ORAL AND INTRAVENOUS GLUCOSE ADMINISTRATION. J Clin Endocrinol Metab. 1964;24(10):1076–1082. doi:10.1210/jcem-24-10-1076
  • McIntyre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet. 1964;2(7349):20–21. doi:10.1016/S0140-6736(64)90011-X
  • Perley M, Kipnis D. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest. 1967;46(1954–1962):1954–1962. doi:10.1172/JCI105685
  • Brown JCDJ, Ross SA, Dupré J. Identification and actions of gastric inhibitory polypeptide. Recent Prog Horm Res. 1975;31:487–532. doi:10.1016/b978-0-12-571131-9.50017-7
  • Elahi D, Andersen D, Brown J, et al. Pancreatic alpha- and beta-cell responses to GIP infusion in normal man. Am J Physiol. 1979;237:185–191.
  • Ebert R, Creutzfeldt W. Influence of gastric inhibitory polypeptide antiserum on glucose-induced insulin secretion in rats. Endocrinology. 1982;111(5):1601–1606. doi:10.1210/endo-111-5-1601
  • Wt SD, Roth SE, Brenner MJ. Cell-free synthesis and processing of multiple precursors to glucagon. Nature. 1981;289:511–514. doi:10.1038/289511a0
  • Wg MS, Habener JF. Insulinotropin: glucagon-like peptide 1 (737) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987;79:616–619. doi:10.1172/JCI112855
  • Yamada Y, Tsukiyama K, Sato T, Shimizu T, Fujita H, Narita T. Novel extrapancreatic effects of incretin. J Diabetes Invest. 2016;7(S1):76–79. doi:10.1111/jdi.12495
  • Dd BPL. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Recept Channels. 2002;8:179–188. doi:10.1080/10606820213687
  • Wang X, Liu H, Chen J, Li Y, Qu S. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1. Int J Endocrinol. 2015;2015:11. doi:10.1155/2015/651757
  • Ahlkvist L, Vikman J, Pacini G, Ahrén B. Synergism by individual macronutrients explains the marked early GLP-1 and islet hormone responses to mixed meal challenge in mice. Regul Pept. 2012;178(1):29–35. doi:10.1016/j.regpep.2012.06.004
  • Meloni AR, DeYoung MB, Lowe C, Parkes DG. GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. Diabetes Obesity Metab. 2013;15(1):15–27. doi:10.1111/j.1463-1326.2012.01663.x
  • Padidela R, Patterson M, Sharief N, Ghatei M, Hussain K. Elevated basal and post-feed glucagon-like peptide 1 (GLP-1) concentrations in the neonatal period. Eur J Endocrinol. 2009;160(1):53–58. doi:10.1530/EJE-08-0807
  • Dailey MJ, Moran TH. Glucagon-like peptide 1 and appetite. Trends Endocrinol Metab. 2013;24(2):85–91. doi:10.1016/j.tem.2012.11.008
  • Anini Y, Hansotia T, Brubaker PL. Muscarinic Receptors Control Postprandial Release of Glucagon-Like Peptide-1: in Vivo and in Vitro Studies in Rats. Endocrinology. 2002;143(6):2420–2426. doi:10.1210/endo.143.6.8840
  • Gribble FM, Williams L, Simpson AK, Reimann F. A Novel Glucose-Sensing Mechanism Contributing to Glucagon-Like Peptide-1 Secretion From the GLUTag Cell Line. Diabetes. 2003;52(5):1147. doi:10.2337/diabetes.52.5.1147
  • Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discovery Today. 2016;21(5):802–818. doi:10.1016/j.drudis.2016.01.013
  • Andreas Nygaard M, Gitte H, Sarah Juel P, et al. Long-term characterization of the diet-induced obese and diet-resistant rat model: a polygenetic rat model mimicking the human obesity syndrome. J Endocrinol. 2010;206(3):287–296. doi:10.1677/JOE-10-0004
  • Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM. Glucose sensing in L cells: a primary cell study. Cell Metab. 2008;8(6):532–539. doi:10.1016/j.cmet.2008.11.002
  • Seufert J, Gallwitz B. The extra-pancreatic effects of GLP-1 receptor agonists: a focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes Obesity Metab. 2014;16(8):673–688. doi:10.1111/dom.12251
  • Robinson E, Tate M, Lockhart S, et al. Metabolically-inactive glucagon-like peptide-1(9–36)amide confers selective protective actions against post-myocardial infarction remodelling. Cardiovascular Diabetology. 2016;15(1):65. doi:10.1186/s12933-016-0386-5
  • Sharma R, McDonald TS, Eng H, et al. In Vitro Metabolism of the Glucagon-Like Peptide-1 (GLP-1)–Derived Metabolites GLP-1(9-36)amide and GLP-1(28-36)amide in Mouse and Human Hepatocytes. Drug Metab. Dispos. 2013;41(12):2148. doi:10.1124/dmd.113.054254
  • Habener JF, Stanojevic V. Pancreas and Not Gut Mediates the GLP-1-Induced Glucoincretin Effect. Cell Metab. 2017;25(4):757–758. doi:10.1016/j.cmet.2017.03.020
  • Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metabol. 2019;30:72–130. doi:10.1016/j.molmet.2019.09.010
  • Portha B, Tourrel-Cuzin C, Movassat J. Activation of the GLP-1 Receptor Signalling Pathway: a Relevant Strategy to Repair a Deficient Beta-Cell Mass. Exp Diabetes Res. 2011;2011:11. doi:10.1155/2011/376509
  • Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol. 2018;9(672):58. doi:10.3389/fendo.2018.00058
  • Tamura K, Minami K, Kudo M, Iemoto K, Takahashi H, Seino S. Liraglutide improves pancreatic Beta cell mass and function in alloxan-induced diabetic mice. PLoS One. 2015;10(5):e0126003. doi:10.1371/journal.pone.0126003
  • Garber AJ. Incretin effects on β-cell function, replication, and mass: the human perspective. Diabetes Care. 2011;34:S258–S263.
  • Xu G, Kaneto H, Lopez-Avalos MD, Weir GC, Bonner-Weir S. GLP-1/exendin-4 facilitates β-cell neogenesis in rat and human pancreatic ducts. Diabetes Res Clin Pract. 2006;73(1):107–110. doi:10.1016/j.diabres.2005.11.007
  • Buteau J, Foisy S, Joly E, Prentki M. Glucagon-Like Peptide 1 Induces Pancreatic β-Cell Proliferation Via Transactivation of the Epidermal Growth Factor Receptor. Diabetes. 2003;52(1):124–132. doi:10.2337/diabetes.52.1.124
  • Biden TJ, Boslem E, Chu KY, Sue N. Lipotoxic endoplasmic reticulum stress, β cell failure, and type 2 diabetes mellitus. Trends Endocrinol Metab. 2014;25(8):389–398. doi:10.1016/j.tem.2014.02.003
  • Buteau J. GLP-1 receptor signaling: effects on pancreatic β-cell proliferation and survival. Diabetes Metabolism. 2008;34:S73–S77.
  • Cunha DA, Ladrière L, Ortis F, et al. Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes. 2009;58(12):2851–2862. doi:10.2337/db09-0685
  • Shin T, Naoki Y, Katsura T, et al. Protection of pancreatic β-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies. J Endocrinol. 2007;193(1):65–74. doi:10.1677/JOE-06-0148
  • Yusta B, Baggio LL, Estall JL, et al. GLP-1 receptor activation improves β cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 2006;4(5):391–406. doi:10.1016/j.cmet.2006.10.001
  • Arden C. A role for Glucagon-Like Peptide-1 in the regulation of β-cell autophagy. Peptides. 2018;100:85–93. doi:10.1016/j.peptides.2017.12.002
  • Zummo FP, Cullen KS, Honkanen-Scott M, Shaw JAM, Lovat PE, Arden C. Glucagon-Like Peptide 1 Protects Pancreatic β-Cells From Death by Increasing Autophagic Flux and Restoring Lysosomal Function. Diabetes. 2017;66(5):1272–1285. doi:10.2337/db16-1009
  • Lim GE, Brubaker PL. Glucagon-Like Peptide 1 Secretion by the L-Cell. Diabetes. 2006;55(Supplement 2):S70–S77. doi:10.2337/db06-S020
  • Carlessi R, Chen Y, Rowlands J, et al. GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation. Sci Rep. 2017;7(1):2661. doi:10.1038/s41598-017-02838-2
  • Cornu M, Modi H, Kawamori D, Kulkarni RN, Joffraud M, Thorens B. Glucagon-like peptide-1 increases beta-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. J Biol Chem. 2010;285(14):10538–10545. doi:10.1074/jbc.M109.091116
  • Rowlands J, Cruzat V, Carlessi R, Newsholme P. Insulin and IGF-1 receptor autocrine loops are not required for Exendin-4 induced changes to pancreatic β-cell bioenergetic parameters and metabolism in BRIN-BD11 cells. Peptides. 2018;100:140–149. doi:10.1016/j.peptides.2017.11.015
  • Simon Hughes PN D. Alpha cell function in type 1 diabetes. Br J Diabetes. 2014;14(2):45–51. doi:10.15277/bjdvd.2014.014
  • Meier JJ, Gethmann A, Götze O, et al. Glucagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia. 2006;49(3):452–458. doi:10.1007/s00125-005-0126-y
  • Sancho V, Daniele G, Lucchesi D, et al. Metabolic regulation of GLP-1 and PC1/3 in pancreatic α-cell line. PLoS One. 2017;12(11):e0187836. doi:10.1371/journal.pone.0187836
  • Campbell SA, Johnson J, Light PE. Evidence for the existence and potential roles of intra-islet glucagon-like peptide-1. Islets. 2021;13(1–2):32–50. doi:10.1080/19382014.2021.1889941
  • Saikia M, Holter MM, Donahue LR, et al. GLP-1 receptor signaling increases PCSK1 and β cell features in human α cells. JCI Insight. 2021;6(3). doi:10.1172/jci.insight.141851
  • Ramracheya R, Chapman C, Chibalina M, et al. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca(2+) channels. Physiological Reports. 2018;6(17):e13852. doi:10.14814/phy2.13852
  • Zhang Y, Parajuli KR, Fava GE, et al. GLP-1 Receptor in Pancreatic α-Cells Regulates Glucagon Secretion in a Glucose-Dependent Bidirectional Manner. Diabetes. 2019;68(1):34–44. doi:10.2337/db18-0317
  • Wettergren A, Petersen H, Orskov C, Christiansen J, Sheikh SP, Holst JJ. Glucagon-Like Peptide-1 7-36 Amide and Peptide YY from the L-Cell of the Ileal Mucosa Are Potent Inhibitors of Vagally Induced Gastric Acid Secretion in Man. Scand J Gastroenterol. 1994;29(6):501–505. doi:10.3109/00365529409092462
  • Maljaars PW, Peters HP, Mela DJ, M AA. Ileal brake: a sensible food target for appetite control: a review. Physiol Behav. 2008;95:271–281. doi:10.1016/j.physbeh.2008.07.018
  • Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Investig. 1998;101(3):515–520. doi:10.1172/JCI990
  • Tang-Christensen M, Larsen PJ, Göke R, et al. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol. 1996;271:848–856.
  • Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379(6560):69–72. doi:10.1038/379069a0
  • Burcelin R, Da Costa A, Drucker D, T B. Glucose competence of the hepatoportal vein sensor requires the presence of an activated glucagon-like peptide-1 receptor. Diabetes. 2001;50(8):1720–1728. doi:10.2337/diabetes.50.8.1720
  • Alruwaili H, Dehestani B, le Roux CW. Clinical Impact of Liraglutide as a Treatment of Obesity. Clin Pharmacol. 2021;13:53–60. doi:10.2147/CPAA.S276085
  • Wang JY, Wang QW, Yang XY, et al. GLP-1 receptor agonists for the treatment of obesity: role as a promising approach. Front Endocrinol. 2023;14:1085799. doi:10.3389/fendo.2023.1085799
  • Li J, Zheng J, Wang S, Lau HK, Fathi A, Wang Q. Cardiovascular Benefits of Native GLP-1 and its Metabolites: an Indicator for GLP-1-Therapy Strategies. Front Physiol. 2017;8:15. doi:10.3389/fphys.2017.00015
  • Okerson T, Chilton RJ. The Cardiovascular Effects of GLP-1 Receptor Agonists. Cardiovasc. Ther. 2012;30(3):e146–e155. doi:10.1111/j.1755-5922.2010.00256.x
  • Reed J, Kanamarlapudi V, Bain S. Mechanism of cardiovascular disease benefit of glucagon-like peptide 1 agonists. Cardiovascular Endocrinol Metab. 2018;7(1):18–23. doi:10.1097/XCE.0000000000000147
  • Hein GJ, Baker C, Hsieh J, Farr S, Adeli K. GLP-1 and GLP-2 as Yin and Yang of Intestinal Lipoprotein Production: evidence for Predominance of GLP-2–Stimulated Postprandial Lipemia in Normal and Insulin-Resistant States. Diabetes. 2013;62(2):373–381. doi:10.2337/db12-0202
  • Moretto TJ, Milton DR, Ridge TD, et al. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study. Clin. Ther. 2008;30(8):1448–1460. doi:10.1016/j.clinthera.2008.08.006
  • Shah Z, Kampfrath T, Deiuliis JA, et al. Chronic DPP-4 Inhibition Reduces Atherosclerosis and Inflammation via Effects on Monocyte Recruitment and Chemotaxis. Circulation. 2011;124(21):2338–2349.
  • Wright EJ, Farrell KA, Malik N, et al. Encapsulated Glucagon-Like Peptide-1-Producing Mesenchymal Stem Cells Have a Beneficial Effect on Failing Pig Hearts. Stem Cells Translational Med. 2012;1(10):759–769. doi:10.5966/sctm.2012-0064
  • Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N Engl J Med. 2013;369(14):1317–1326. doi:10.1056/NEJMoa1307684
  • White WB, Cannon CP, Heller SR, et al. Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes. N Engl J Med. 2013;369(14):1327–1335. doi:10.1056/NEJMoa1305889
  • Kristensen SL, Rørth R, Jhund PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019;7(10):776–785. doi:10.1016/S2213-8587(19)30249-9
  • Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N Engl J Med. 2023;389(24):2221–2232. doi:10.1056/NEJMoa2307563
  • Nathanson D, Erdogdu O, Pernow J, Zhang Q, Nyström T. Endothelial dysfunction induced by triglycerides is not restored by exenatide in rat conduit arteries ex vivo. Regul Pept. 2009;157(1–3):8–13. doi:10.1016/j.regpep.2009.07.003
  • Ban K, Noyan-Ashraf MH, Hoefer J, Bolz -S-S, Drucker DJ, Husain M. Cardioprotective and Vasodilatory Actions of Glucagon-Like Peptide 1 Receptor Are Mediated Through Both Glucagon-Like Peptide 1 Receptor–Dependent and –Independent Pathways. Circulation. 2008;117(18):2340–2350. doi:10.1161/CIRCULATIONAHA.107.739938
  • Ban K, Kim K-H, Cho C-K, et al. Glucagon-Like Peptide (GLP)-1(9-36)Amide-Mediated Cytoprotection Is Blocked by Exendin(9-39) Yet Does Not Require the Known GLP-1 Receptor. Endocrinology. 2010;151(4):1520–1531. doi:10.1210/en.2009-1197
  • Drucker DJ. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018;27(4):740–756. doi:10.1016/j.cmet.2018.03.001
  • Hogan AE, Tobin AM, Ahern T, et al. Glucagon-like peptide-1 (GLP-1) and the regulation of human invariant natural killer T cells: lessons from obesity, diabetes and psoriasis. Diabetologia. 2011;54(11):2745–2754. doi:10.1007/s00125-011-2232-3
  • Faurschou A, Gyldenløve M, Rohde U, et al. Lack of effect of the glucagon-like peptide-1 receptor agonist liraglutide on psoriasis in glucose-tolerant patients – a randomized placebo-controlled trial. J Eur Acad Dermatol Venereol. 2015;29(3):555–559. doi:10.1111/jdv.12629
  • Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nature med. 2011;17(11):1481–1489. doi:10.1038/nm.2513
  • Lebherz C, Schlieper G, Möllmann J, et al. GLP-1 Levels Predict Mortality in Patients with Critical Illness as Well as End-Stage Renal Disease. Am J Med. 2017;130(7):833–841.e833. doi:10.1016/j.amjmed.2017.03.010
  • Koehler JA, Baggio LL, Lamont BJ, Ali S, Drucker DJ. Glucagon-like peptide-1 receptor activation modulates pancreatitis-associated gene expression but does not modify the susceptibility to experimental pancreatitis in mice. Diabetes. 2009;58(9):2148–2161. doi:10.2337/db09-0626
  • Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes. 2008;57(12):3281–3288. doi:10.2337/db08-0688
  • Yusta B, Baggio LL, Koehler J, et al. GLP-1R Agonists Modulate Enteric Immune Responses Through the Intestinal Intraepithelial Lymphocyte GLP-1R. Diabetes. 2015;64(7):2537. doi:10.2337/db14-1577
  • Bendotti G, Montefusco L, Lunati ME, et al. The anti-inflammatory and immunological properties of GLP-1 Receptor Agonists. Pharmacol Res. 2022;182:106320. doi:10.1016/j.phrs.2022.106320
  • Gutzwiller J-P, Tschopp S, Bock A, et al. Glucagon-Like Peptide 1 Induces Natriuresis in Healthy Subjects and in Insulin-Resistant Obese Men. J Clin Endocrinol Metab. 2004;89(6):3055–3061. doi:10.1210/jc.2003-031403
  • Crajoinas RO, Oricchio FT, Pessoa TD, et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol. 2011;301(2):F355–F363. doi:10.1152/ajprenal.00729.2010
  • Kodera R, Shikata K, Kataoka HU, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011;54(4):965–978. doi:10.1007/s00125-010-2028-x
  • Mann JFE, Ørsted DD, Brown-Frandsen K, et al. Liraglutide and Renal Outcomes in Type 2 Diabetes. N Engl J Med. 2017;377(9):839–848. doi:10.1056/NEJMoa1616011
  • Kawanami D, Takashi Y. GLP-1 Receptor Agonists in Diabetic Kidney Disease: from Clinical Outcomes to Mechanisms. Front Pharmacol. 2020;11(967). doi:10.3389/fphar.2020.00967
  • Giugliano D, Maiorino MI. GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials. Int J Med. 2019;21(11):2576–2580. doi:10.1111/dom.13847
  • Rossing P, Baeres FMM, Bakris G, et al. The rationale, design and baseline data of FLOW, a kidney outcomes trial with once-weekly semaglutide in people with type 2 diabetes and chronic kidney disease. Nephrology Dialysis Transplantation. 2023;38(9):2041–2051. doi:10.1093/ndt/gfad009
  • Williams DM, Evans M. Semaglutide: charting New Horizons in GLP-1 Analogue Outcome Studies. Diabetes Therapy. 2020;11(10):2221–2235. doi:10.1007/s13300-020-00917-8
  • Perry T, Lahiri DK, Sambamurti K, et al. Glucagon-like peptide-1 decreases endogenous amyloid-β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron. J Neurosci Res. 2003;72(5):603–612. doi:10.1002/jnr.10611
  • Gault VA, Hölscher C. GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by beta-amyloid. Eur. J. Pharmacol. 2008;587(1):112–117. doi:10.1016/j.ejphar.2008.03.025
  • Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10103):1664–1675. doi:10.1016/S0140-6736(17)31585-4
  • Foltynie T, Aviles-Olmos I. Exenatide as a potential treatment for patients with Parkinson’s disease: first steps into the clinic. Alzheimer’s Dementia. 2014;10(1):S38–S46. doi:10.1016/j.jalz.2013.12.005
  • Li Y, Perry T, Kindy MS, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci USA. 2009;106(4):1285–1290. doi:10.1073/pnas.0806720106
  • Li Y, Chigurupati S, Holloway H, et al. Exendin-4 Ameliorates Motor Neuron Degeneration in Cellular and Animal Models of Amyotrophic Lateral Sclerosis. PLoS One. 2012;7:78.
  • Brierley DI, Holt MK, Singh A. Central and peripheral GLP-1 systems independently suppress eating. Feb. 2021;3(2):258–273.
  • Nørgaard CH, Friedrich S, Hansen CT, et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimer's Dementia. 2022;8(1):e12268.
  • Raab EL, Vuguin PM, Stoffers DA, Simmons RA. Neonatal exendin-4 treatment reduces oxidative stress and prevents hepatic insulin resistance in intrauterine growth-retarded rats. Am J Physiol. 2009;297(6):R1785–R1794. doi:10.1152/ajpregu.00519.2009
  • Redondo A, Trigo M, Acitores A, Valverde I, Villanueva-Peñacarrillo M. Cell signalling of the GLP-1 action in rat liver. Mol Cell Endocrinol. 2003;204:43–50. doi:10.1016/S0303-7207(03)00146-1
  • Svegliati-Baroni G, Saccomanno S, Rychlicki C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int. 2011;31(9):1285–1297. doi:10.1111/j.1478-3231.2011.02462.x
  • Hiroaki Y, Wataru A. Spatial expression of glucagon-like peptide 1 receptor and caveolin-1 in hepatocytes with macrovesicular steatosis in non-alcoholic steatohepatitis. BMJ Open Gastroenterology. 2020;7(1):e000370. doi:10.1136/bmjgast-2019-000370
  • Gonzalez N, Acitores A, Sancho V, Valverde I, VillanuevaPenacarrillo M. Effect of GLP-1 on glucose transport and its cell signalling in human myocytes. Regul Pept. 2005;126:203–211. doi:10.1016/j.regpep.2004.10.002
  • Luque M, Gonzalez N, Marquez L, et al. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes. J Endocrinol. 2002;173(3):465–473. doi:10.1677/joe.0.1730465
  • Yang H, Egan J, Wang Y, et al. GLP-1 action in L6 myotubes is via a receptor different from the pancreatic GLP-1 receptor. Am J Physiol Cell Physiol. 1998;275(3):675–683. doi:10.1152/ajpcell.1998.275.3.C675
  • Wu L, Zhou M, Li T, et al. GLP-1 regulates exercise endurance and skeletal muscle remodeling via GLP-1R/AMPK pathway. Biochimica et Biophysica Acta. 2022;1869(9):119300. doi:10.1016/j.bbamcr.2022.119300
  • Egan JM, Montrose Rafizadeh C, Wang Y, Bernier M, R J. Glucagon-like peptide-1 (7–36) amide (GLP-1) enhances insulin stimulated glucose metabolism in 3T3-L1 adipocytes: one of several potential extrapancreatic sites of GLP-1 action. Endocrinology. 1994;135:2070–2075. doi:10.1210/endo.135.5.7956929
  • Oben J, Morgan L, Fletcher J, Marks V. Effect of the enteropancreatic hormones, gastric inhibitory polypeptide and glucagon like polypeptide-1 (7–36) amide, on fatty acid synthesis in explants of rat adipose tissue. J Endocrinol. 1991;130:267–272. doi:10.1677/joe.0.1300267
  • Wang Y, Kole HK, Montrose-Rafizadeh C, Perfetti R, Bernier M, E JM. Regulation of glucose transporters and hexose uptake in 3T3-L1 adipocytes: glucagon-like peptide-1 and insulin interactions. J Mol Endocrinol. 1997;19:241–248. doi:10.1677/jme.0.0190241
  • Zhao L, Zhu C, Lu M, et al. The key role of a glucagon-like peptide-1 receptor agonist in body fat redistribution. J Endocrinol. 2019;240(2):271–286. doi:10.1530/JOE-18-0374
  • Ejarque M, Guerrero-Pérez F, De la morena N, et al. Role of adipose tissue GLP-1R expression in metabolic improvement after bariatric surgery in patients with type 2 diabetes. Apr. 2019;9(1):6274.
  • Yamada C, Yamada Y, Tsukiyama K, et al. The Murine Glucagon-Like Peptide-1 Receptor Is Essential for Control of Bone Resorption. Endocrinology. 2008;149(2):574–579. doi:10.1210/en.2007-1292
  • Lamari Y, Boissard C, Moukhtar MS, Jullienne A, Rosselin G, Garel JM. Expression of glucagon-like peptide 1 receptor in a murine C cell line Regulation of calcitonin gene by glucagon-like peptide 1. FEBS Lett. 1996;393(2–3):248–252. doi:10.1016/0014-5793(96)00895-2
  • Nuche-Berenguer B, Moreno P, Portal-Nuñez S, Dapía S, Esbrit P, Villanueva-Peñacarrillo ML. Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regul Pept. 2010;159(1–3):61–66. doi:10.1016/j.regpep.2009.06.010
  • Xie B, Chen S, Xu Y, et al. The Impact of Glucagon-Like Peptide 1 Receptor Agonists on Bone Metabolism and Its Possible Mechanisms in Osteoporosis Treatment. Front Pharmacol. 2021;12.
  • Holman RR, Bethel MA, Mentz RJ, et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2017;377(13):1228–1239. doi:10.1056/NEJMoa1612917
  • Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375(19):1834–1844. doi:10.1056/NEJMoa1607141
  • Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med. 2015;373(23):2247–2257. doi:10.1056/NEJMoa1509225
  • Richter G, Feddersen O, Wagner U, Barth P, Goke R, G B. GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery. Am J Physiol Lung Cell Mol Physiol. 1993;265(4):374–381. doi:10.1152/ajplung.1993.265.4.L374
  • Wang W, Mei A, Qian H, et al. The Role of Glucagon-Like Peptide-1 Receptor Agonists in Chronic Obstructive Pulmonary Disease. Pulmonary Dis. 2023;18:129–137.
  • Altintas Dogan AD, Hilberg O, Hess S, Jensen TT, Bladbjerg EM. Respiratory Effects of Treatment with a Glucagon-Like Peptide-1 Receptor Agonist in Patients Suffering from Obesity and Chronic Obstructive Pulmonary Disease. Int J Med. 2022;17:405–414. doi:10.2147/COPD.S350133
  • Scrocchi LA, Brown TJ, MaClusky N, et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nature Med. 1996;2(11):1254–1258. doi:10.1038/nm1196-1254
  • Ahrén B, Yamada Y, Seino Y. The Insulin Response to Oral Glucose in GIP and GLP-1 Receptor Knockout Mice: review of the Literature and Stepwise Glucose Dose Response Studies in Female Mice. Front Endocrinol. 2021;12.
  • Ussher JR, Baggio LL, Campbell JE, et al. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Mol Metabol. 2014;3(5):507–517. doi:10.1016/j.molmet.2014.04.009
  • Smith EP, An Z, Wagner C, et al. The role of β-cell GLP-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab. 2014;19(6):1050–1057. doi:10.1016/j.cmet.2014.04.005
  • Ayala JE, Bracy DP, James FD, Burmeister MA, Wasserman DH, Drucker DJ. Glucagon-Like Peptide-1 Receptor Knockout Mice Are Protected from High-Fat Diet-Induced Insulin Resistance. Endocrinology. 2010;151(10):4678–4687. doi:10.1210/en.2010-0289
  • McIntosh CHS, Widenmaier S, Kim SJ. Chapter 15 Glucose-Dependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP). Vitamin hormon. 2009;80:409–471.
  • Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced Postprandial Concentrations of Intact Biologically Active Glucagon-Like Peptide 1 in Type 2 Diabetic Patients. Diabetes. 2001;50(3):609–613. doi:10.2337/diabetes.50.3.609
  • Vollmer K, Holst JJ, Baller B, et al. Predictors of Incretin Concentrations in Subjects With Normal, Impaired, and Diabetic Glucose Tolerance. Diabetes. 2008;57(3):678–687. doi:10.2337/db07-1124
  • Psichas A, Glass LL, Sharp SJ, Reimann F, Gribble FM. Galanin inhibits GLP‐1 and GIP secretion via the GAL(1) receptor in enteroendocrine L and K cells. Br. J. Pharmacol. 2016;173(5):888–898. doi:10.1111/bph.13407
  • Kieffer T, McIntosh C, Pederson R. Degradation of glucose‐dependent insulinotropic polypeptide and truncated glucagon‐like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology. 1995;136:3585–3596. doi:10.1210/endo.136.8.7628397
  • Preitner F, Ibberson M, Franklin I, et al. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Investig. 2004;113(4):635–645. doi:10.1172/JCI200420518
  • Taminato T, Seino Y, Goto Y, et al. Synthetic Gastric Inhibitory Polypeptide Stimulatory Effect on Insulin and Glucagon Secretion in the Rat. Diabetes. 1977;26(5):480–484. doi:10.2337/diab.26.5.480
  • Chia CW, Carlson OD, Kim W, et al. Exogenous Glucose–Dependent Insulinotropic Polypeptide Worsens Post prandial Hyperglycemia in T ype 2 Diabetes. Diabetes. 2009;58(6):1342–1349. doi:10.2337/db08-0958
  • Meier JJ, Gallwitz B, Siepmann N, et al. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia. 2003;46(6):798–801. doi:10.1007/s00125-003-1103-y
  • Lynn FC, Pamir N, Ng EHC, McIntosh CHS, Kieffer TJ, Pederson RA. Defective Glucose-Dependent Insulinotropic Polypeptide Receptor Expression in Diabetic Fatty Zucker Rats. Diabetes. 2001;50(5):1004–1011. doi:10.2337/diabetes.50.5.1004
  • El K, Campbell JE. The role of GIP in α-cells and glucagon secretion. Peptides. 2020;125:170213. doi:10.1016/j.peptides.2019.170213
  • Mj BB. Gastric inhibitory polypeptide enhancement of the insulin effect on fatty acid incorporation into adipose tissue in the rat. Regul Pept. 1983;7:3–8. doi:10.1016/0167-0115(83)90276-8
  • Thomsen C, Rasmussen O, Lousen T, et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr. 1999;69(6):1135–1143. doi:10.1093/ajcn/69.6.1135
  • Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nature Med. 2002;8(7):738–742. doi:10.1038/nm727
  • Naitoh R, Miyawaki K, Harada N, et al. Inhibition of GIP signaling modulates adiponectin levels under high-fat diet in mice. Biochem. Biophys. Res. Commun. 2008;376(1):21–25. doi:10.1016/j.bbrc.2008.08.052
  • Zhou H, Yamada Y, Tsukiyama K, et al. Gastric inhibitory polypeptide modulates adiposity and fat oxidation under diminished insulin action. Biochem. Biophys. Res. Commun. 2005;335(3):937–942. doi:10.1016/j.bbrc.2005.07.164
  • Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM. Targeted Ablation of Glucose-dependent Insulinotropic Polypeptide-producing Cells in Transgenic Mice Reduces Obesity and Insulin Resistance Induced by a High Fat Diet. J Biol Chem. 2008;283(26):18365–18376. doi:10.1074/jbc.M710466200
  • Irwin N, McClean PL, O’Harte FPM, Gault VA, Harriott P, Flatt PR. Early administration of the glucose-dependent insulinotropic polypeptide receptor antagonist (Pro3)GIP prevents the development of diabetes and related metabolic abnormalities associated with genetically inherited obesity in ob/ob mice. Diabetologia. 2007;50(7):1532–1540. doi:10.1007/s00125-007-0692-2
  • Thondam SK, Cuthbertson DJ, Wilding JPH. The influence of Glucose-dependent Insulinotropic Polypeptide (GIP) on human adipose tissue and fat metabolism: implications for obesity, type 2 diabetes and Non-Alcoholic Fatty Liver Disease (NAFLD). Peptides. 2020;125:170208. doi:10.1016/j.peptides.2019.170208
  • Ceperuelo-Mallafré V, Duran X, Pachón G, et al. Disruption of GIP/GIPR Axis in Human Adipose Tissue Is Linked to Obesity and Insulin Resistance. J Clin Endocrinol Metab. 2014;99(5):E908–E919. doi:10.1210/jc.2013-3350
  • Starich GH, Bar RS, Mazzaferri EL. GIP increases insulin receptor affinity and cellular sensitivity in adipocytes. Am J Physiol. 1985;249(6 Pt 1):E603–607. doi:10.1152/ajpendo.1985.249.6.E603
  • Bollag RJ, Zhong Q, Ding KH, et al. Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol Cell Endocrinol. 2001;177(1–2):35–41. doi:10.1016/S0303-7207(01)00405-1
  • Tsukiyama K, Yamada Y, Yamada C, et al. Gastric Inhibitory Polypeptide as an Endogenous Factor Promoting New Bone Formation after Food Ingestion. Mol Endocrinol. 2006;20(7):1644–1651. doi:10.1210/me.2005-0187
  • Xie D, Zhong Q, Ding K-H, et al. Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. Bone. 2007;40(5):1352–1360. doi:10.1016/j.bone.2007.01.007
  • Stensen S, Gasbjerg LS, Helsted MM, Hartmann B, Christensen MB, Knop FK. GIP and the gut-bone axis – physiological, pathophysiological and potential therapeutic implications. Peptides. 2020;125:170197. doi:10.1016/j.peptides.2019.170197
  • Skov-Jeppesen K, Svane MS, Martinussen C, et al. GLP-2 and GIP exert separate effects on bone turnover: a randomized, placebo-controlled, crossover study in healthy young men. Bone. 2019;125:178–185. doi:10.1016/j.bone.2019.05.014
  • Christensen MB, Lund A, Calanna S, et al. Glucose-Dependent Insulinotropic Polypeptide (GIP) Inhibits Bone Resorption Independently of Insulin and Glycemia. J Clin Endocrinol Metab. 2018;103(1):288–294. doi:10.1210/jc.2017-01949
  • Hansen MS, Søe K, Christensen LL, et al. GIP reduces osteoclast activity and improves osteoblast survival in primary human bone cells. Eur J Endocrinol. 2023;188(1):144–157. doi:10.1093/ejendo/lvac004
  • Zhang Q, Delessa CT, Augustin R, et al. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab. 2021;33(4):833–844.e835. doi:10.1016/j.cmet.2021.01.015
  • Adriaenssens AE, Biggs EK, Darwish T, et al. Glucose-Dependent Insulinotropic Polypeptide Receptor-Expressing Cells in the Hypothalamus Regulate Food Intake. Cell Metab. 2019;30(5):987–996.e986. doi:10.1016/j.cmet.2019.07.013
  • Samms RJ, Coghlan MP, Sloop KW. How May GIP Enhance the Therapeutic Efficacy of GLP-1?. Trends Endocrinol Metab. 2020;31(6):410–421. doi:10.1016/j.tem.2020.02.006
  • Salehi M, Aulinger B, D’Alessio DA. Effect of Glycemia on Plasma Incretins and the Incretin Effect During Oral Glucose Tolerance Test. Diabetes. 2012;61(11):2728.
  • Hansotia T, Baggio LL, Delmeire D, et al. Double Incretin Receptor Knockout (DIRKO) Mice Reveal an Essential Role for the Enteroinsular Axis in Transducing the Glucoregulatory Actions of DPP-IV Inhibitors. Diabetes. 2004;53(5):1326–1335. doi:10.2337/diabetes.53.5.1326
  • Hansotia T, Maida A, Flock G, et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J Clin Investig. 2007;117(1):143–152. doi:10.1172/JCI25483
  • Ayala JE, Bracy DP, Hansotia T, et al. Insulin Action in the Double Incretin Receptor Knockout Mouse. Diabetes. 2008;57(2):288. doi:10.2337/db07-0704
  • Finan B, Yang B, Ottaway N, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Med. 2015;21(1):27–36. doi:10.1038/nm.3761
  • Holst JJ, Rosenkilde MM. GIP as a Therapeutic Target in Diabetes and Obesity: insight From Incretin Co-agonists. J Clin Endocrinol Metab. 2020;105(8):e2710–e2716. doi:10.1210/clinem/dgaa327
  • Cui J, Shang A, Wang W, Chen W. Rational design of a GLP-1/GIP/Gcg receptor triagonist to correct hyperglycemia, obesity and diabetic nephropathy in rodent animals. Life Sci. 2020;260:118339. doi:10.1016/j.lfs.2020.118339
  • Jastreboff AM, Kaplan LM, Frías JP, et al. Triple–Hormone-Receptor Agonist Retatrutide for Obesity — a Phase 2 Trial. N Engl J Med. 2023;389(6):514–526. doi:10.1056/NEJMoa2301972
  • Urva S, Coskun T, Loh MT, et al. LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist in people with type 2 diabetes: a phase 1b, multicentre, double-blind, placebo-controlled, randomised, multiple-ascending dose trial. Lancet. 2022;400(10366):1869–1881. doi:10.1016/S0140-6736(22)02033-5
  • Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease. Clin J Am Soc Nephrol. 2017;12(12):2032. doi:10.2215/CJN.11491116
  • Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017;2(14):e93751. doi:10.1172/jci.insight.93751
  • Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World j Diabetes. 2015;6(13):1246–1258. doi:10.4239/wjd.v6.i13.1246
  • Best JH, Hoogwerf BJ, Herman WH, et al. Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care. 2011;34(1):90–95. doi:10.2337/dc10-1393
  • Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;375(4):311–322. doi:10.1056/NEJMoa1603827
  • Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394(10193):121–130. doi:10.1016/S0140-6736(19)31149-3
  • Husain M, Birkenfeld AL, Donsmark M, et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2019;381(9):841–851. doi:10.1056/NEJMoa1901118