92
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Evaluation of Trace Elements Levels and Construction of Auxiliary Prediction Model in Patients with Diabetes Ketoacidosis in Type 1 Diabetes

, , & ORCID Icon
Pages 3403-3415 | Received 21 Aug 2023, Accepted 22 Oct 2023, Published online: 30 Oct 2023

References

  • Syed FZ. Type 1 Diabetes Mellitus. Ann Intern Med. 2022;175(3):Itc33–itc48. doi:10.7326/aitc202203150
  • Maahs DM, Hermann JM, Holman N, et al. Rates of diabetic ketoacidosis: international comparison with 49,859 pediatric patients with type 1 diabetes from England, Wales, the U.S., Austria, and Germany. Diabetes Care. 2015;38(10):1876–1882. doi:10.2337/dc15-0780
  • Danne T, Garg S, Peters AL, et al. International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with Sodium-Glucose Cotransporter (SGLT) Inhibitors. Diabetes Care. 2019;42(6):1147–1154. doi:10.2337/dc18-2316
  • Adrogué HJ, Wilson H, Boyd AE, Suki WN, Eknoyan G. Plasma acid-base patterns in diabetic ketoacidosis. N Engl J Med. 1982;307(26):1603–1610. doi:10.1056/nejm198212233072603
  • Hoffman WH, Burek CL, Waller JL, Fisher LE, Khichi M, Mellick LB. Cytokine response to diabetic ketoacidosis and its treatment. Clin Immunol. 2003;108(3):175–181. doi:10.1016/s1521-6616(03)00144-x
  • Kawamori D. Exploring the molecular mechanisms underlying α- and β-cell dysfunction in diabetes. Diabetol Int. 2017;8(3):248–256. doi:10.1007/s13340-017-0327-x
  • Yosten GLC. Yosten GLC Alpha cell dysfunction in type 1 diabetes. Peptides. 2018;100:54–60. doi:10.1016/j.peptides.2017.12.001
  • Taborsky GJ. The physiology of glucagon. J Diabetes Sci Technol. 2010;4(6):1338–1344. doi:10.1177/193229681000400607
  • Castellanos L, Tuffaha M, Koren D, Levitsky LL. Management of diabetic ketoacidosis in children and adolescents with type 1 diabetes mellitus. Paediatr Drugs. 2020;22(4):357–367. doi:10.1007/s40272-020-00397-0
  • Kanikarla-Marie P, Jain SK. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radic Biol Med. 2016;95:268–277. doi:10.1016/j.freeradbiomed.2016.03.020
  • Jain SK, Kannan K, Lim G. Ketosis (acetoacetate) can generate oxygen radicals and cause increased lipid peroxidation and growth inhibition in human endothelial cells. Free Radic Biol Med. 1998;25(9):1083–1088. doi:10.1016/s0891-5849(98)00140-3
  • Xu J, Zhou Q, Liu G, Tan Y, Cai L. Analysis of serum and urinal copper and zinc in Chinese northeast population with the prediabetes or diabetes with and without complications. Oxid Med Cell Longev. 2013;2013:635214. doi:10.1155/2013/635214
  • Viktorínová A, Toserová E, Krizko M, Ďuračková Z. Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism. 2009;58(10):1477–1482. doi:10.1016/j.metabol.2009.04.035
  • Faure P, Corticelli P, Richard MJ, et al. Lipid peroxidation and trace element status in diabetic ketotic patients: influence of insulin therapy. Clin Chem. 1993;39(5):789–793. doi:10.1093/clinchem/39.5.789
  • Dutra F, Araki D, Bechara EJ. Aminoacetone induces loss of ferritin ferroxidase and iron uptake activities. Free Radic Res. 2003;37(10):1113–1121. doi:10.1080/10715760310001604116
  • Sergeev IN, Rhoten WB. 1,25-Dihydroxyvitamin D3 evokes oscillations of intracellular calcium in a pancreatic beta-cell line. Endocrinology. 1995;136(7):2852–2861. doi:10.1210/endo.136.7.7789310
  • Ahn C, Kang JH, Jeung E-B. Calcium homeostasis in diabetes mellitus. J Vet Sci. 2017;18(3):261–266. doi:10.4142/jvs.2017.18.3.261
  • Su D, Li Y, Guo M, et al. Clinical analysis of electrolyte disorders in patients with diabetic ketoacidosis. Clin Lab. 2021;67(01/2021). doi:10.7754/Clin.Lab.2020.200309
  • Hu Y, Shi R, Mo R, Hu F. Nomogram for the prediction of diabetic nephropathy risk among patients with type 2 diabetes mellitus based on a questionnaire and biochemical indicators: a retrospective study. Aging. 2020;12(11):10317–10336. doi:10.18632/aging.103259
  • Jiang S, Fang J, Yu T, et al. Novel model predicts diabetic nephropathy in type 2 diabetes. Am J Nephrol. 2020;51(2):130–138. doi:10.1159/000505145
  • ADA. American diabetes association standards of medical care in diabetes-2016 abridged for primary care providers. Clin Diabetes. 2016;34(1):3–21. doi:10.2337/diaclin.34.1.3
  • The management of diabetic ketoacidosis in adults. Available from: http://www.diabetologists-abcd.orguk/JBDS/JBDS.htm. Accessed February 2, 2021.
  • Chai J, Wang Y, Sun Z, Zhou Q, Xu J. Evaluation among trace elements, clinical parameters and type 1 diabetes according to sex: a new sight of auxiliary prediction in negative insulin auto-antibodies population. J Trace Elem Med Biol. 2023;75:127100. doi:10.1016/j.jtemb.2022.127100
  • Wang Y, Gao D, Li X, et al. Early changes in laboratory tests predict liver function damage in patients with moderate coronavirus disease 2019: a retrospective multicenter study. BMC Gastroenterol. 2022;22(1):113. doi:10.1186/s12876-022-02188-y
  • Ahn C, An BS, Jeung E-B. Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas. Mol Cell Endocrinol. 2015;412:302–308. doi:10.1016/j.mce.2015.05.017
  • DeLeo FR, Goedken M, McCormick SJ, Nauseef WM. A novel form of hereditary myeloperoxidase deficiency linked to endoplasmic reticulum/proteasome degradation. J Clin Invest. 1998;101(12):2900–2909. doi:10.1172/jci2649
  • Pittas AG, Dawson-Hughes B, Li T, et al. Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care. 2006;29(3):650–656. doi:10.2337/diacare.29.03.06.dc05-1961
  • van Dam RM, Hu FB, Rosenberg L, Krishnan S, Palmer JR. Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in U.S. black women. Diabetes Care. 2006;29(10):2238–2243. doi:10.2337/dc06-1014
  • Norris CR, Nelson RW, Christopher MM. Serum total and ionized magnesium concentrations and urinary fractional excretion of magnesium in cats with diabetes mellitus and diabetic ketoacidosis. J Am Vet Med Assoc. 1999;215(10):1455–1459.
  • Jain SK, McVie R. Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients. Diabetes. 1999;48(9):1850–1855. doi:10.2337/diabetes.48.9.1850
  • Kanikarla-Marie P, Jain SK. Hyperketonemia (acetoacetate) upregulates NADPH oxidase 4 and elevates oxidative stress, ICAM-1, and monocyte adhesivity in endothelial cells. Cell Physiol Biochem. 2015;35(1):364–373. doi:10.1159/000369702
  • Pelletier A, Coderre L. Ketone bodies alter dinitrophenol-induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes. Am J Physiol Endocrinol Metab. 2007;292(5):E1325–32. doi:10.1152/ajpendo.00186.2006
  • Mooren FC. Magnesium and disturbances in carbohydrate metabolism. Diabetes Obes Metab. 2015;17(9):813–823. doi:10.1111/dom.12492
  • Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci. 2017;67(2):283–301. doi:10.1007/s12576-017-0521-4
  • Muthuraman P, Ramkumar K, Kim DH. Analysis of dose-dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Appl Biochem Biotechnol. 2014;174(8):2851–2863. doi:10.1007/s12010-014-1231-5
  • Lu CW, Lee YC, Kuo CS, Chiang CH, Chang HH, Huang K-C. Association of serum levels of zinc, copper, and iron with risk of metabolic syndrome. Nutrients. 2021;13(2):548. doi:10.3390/nu13020548
  • Salmonowicz B, Krzystek-Korpacka M, Noczyńska A. Trace elements, magnesium, and the efficacy of antioxidant systems in children with type 1 diabetes mellitus and in their siblings. Adv Clin Exp Med. 2014;23(2):259–268. doi:10.17219/acem/37074
  • Lin CC, Huang HH, Hu CW, et al. Trace elements, oxidative stress and glycemic control in young people with type 1 diabetes mellitus. J Trace Elem Med Biol. 2014;28(1):18–22. doi:10.1016/j.jtemb.2013.11.001
  • Zargar AH, Bashir MI, Masoodi SR, et al. Copper, zinc and magnesium levels in type-1 diabetes mellitus. Saudi Med J. 2002;23(5):539–542.
  • Young IS, Tate S, Lightbody JH, McMaster D, Trimble ER. The effects of desferrioxamine and ascorbate on oxidative stress in the streptozotocin diabetic rat. Free Radic Biol Med. 1995;18(5):833–840. doi:10.1016/0891-5849(94)00202-u
  • Nickander KK, McPhee BR, Low PA, Tritschler H. Alpha-lipoic acid: antioxidant potency against lipid peroxidation of neural tissues in vitro and implications for diabetic neuropathy. Free Radic Biol Med. 1996;21(5):631–639. doi:10.1016/0891-5849(96)00172-4
  • Alqarihi A, Gebremariam T, Gu Y, et al. GRP78 and integrins play different roles in host cell invasion during mucormycosis. mBio. 2020:11. doi:10.1128/mBio.01087-20
  • Leiva E, Mujica V, Sepúlveda P, et al. High levels of iron status and oxidative stress in patients with metabolic syndrome. Biol Trace Elem Res. 2013;151(1):1–8. doi:10.1007/s12011-012-9525-3
  • Bozzini C, Girelli D, Olivieri O, et al. Prevalence of body iron excess in the metabolic syndrome. Diabetes Care. 2005;28(8):2061–2063. doi:10.2337/diacare.28.8.2061
  • Zhang C, Rawal S. Dietary iron intake, iron status, and gestational diabetes. Am J Clin Nutr. 2017;106:1672s–80s. doi:10.3945/ajcn.117.156034
  • Fang C, Wu W, Gu X, et al. Association of serum copper, zinc and selenium levels with risk of metabolic syndrome: a nested case-control study of middle-aged and older Chinese adults. J Trace Elem Med Biol. 2019;52:209–215. doi:10.1016/j.jtemb.2018.12.017
  • Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol. 2011;55(4):920–932. doi:10.1016/j.jhep.2011.05.008
  • Burke W, Imperatore G, Reyes M. Iron deficiency and iron overload: effects of diet and genes. Proc Nutr Soc. 2001;60(1):73–80. doi:10.1079/pns200069
  • Mehdi Y, Hornick JL, Istasse L, Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013;18(3):3292–3311. doi:10.3390/molecules18033292
  • Jeong J, Jung Y, Na S, et al. Novel oxidative modifications in redox-active cysteine residues. Mol Cell Proteom. 2011;10(3):M110.000513. doi:10.1074/mcp.M110.000513
  • Anavi S, Madar Z, Tirosh O. Non-alcoholic fatty liver disease, to struggle with the strangle: oxygen availability in fatty livers. Redox Biol. 2017;13:386–392. doi:10.1016/j.redox.2017.06.008
  • Nagumo K, Tanaka M, Chuang VT, et al. Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases. PLoS One. 2014;9(1):e85216. doi:10.1371/journal.pone.0085216
  • Grimmelmann I, Momma M, Zimmer L, et al. Lipase elevation and type 1 diabetes mellitus related to immune checkpoint inhibitor therapy - A multicentre study of 90 patients from the German Dermatooncology Group. Eur J Cancer. 2021;149:1–10. doi:10.1016/j.ejca.2021.02.017
  • Lindegaard ML, Damm P, Mathiesen ER, Nielsen LB. Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression. J Lipid Res. 2006;47(11):2581–2588. doi:10.1194/jlr.M600236-JLR200
  • Dozio N, Indirli R, Giamporcaro GM, et al. Impaired exocrine pancreatic function in different stages of type 1 diabetes. BMJ Open Diabetes Res Care. 2021;9. doi:10.1136/bmjdrc-2019-001158
  • Chandra D, Bsavaraju M, Mr R, Av A. Serum amylase and lipase estimation in diabetic ketoacidosis. J Assoc Physicians India. 2022;70(4):11–12.
  • Quiros JA, Marcin JP, Kuppermann N, et al. Elevated serum amylase and lipase in pediatric diabetic ketoacidosis. Pediatr Crit Care Med. 2008;9(4):418–422. doi:10.1097/PCC.0b013e318172e99b
  • Haddad NG, Croffie JM, Eugster EA. Pancreatic enzyme elevations in children with diabetic ketoacidosis. J Pediatr. 2004;145(1):122–124. doi:10.1016/j.jpeds.2004.03.050
  • Yadav D, Nair S, Norkus EP, Pitchumoni CS. Nonspecific hyperamylasemia and hyperlipasemia in diabetic ketoacidosis: incidence and correlation with biochemical abnormalities. Am J Gastroenterol. 2000;95(11):3123–3128. doi:10.1111/j.1572-0241.2000.03279.x
  • Jiatong Chai ZS, Xing D, Zhou Q, Jiancheng X. The indirect method in the establishment of reference intervals for complement 3 and complement 4: a retrospective study. J Taibah Univ Sci. 2021. doi:10.1016/j.jtumed.2021.10.011