176
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Insulin Resistance-Induced Platelet Hyperactivity and a Potential Biomarker Role of Platelet Parameters: A Narrative Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2843-2853 | Received 11 Jun 2023, Accepted 05 Sep 2023, Published online: 18 Sep 2023

References

  • Hajek AS, Joist JH, Baker RK, Jarett L, Daughaday W. Demonstration and partial characterization of insulin receptors in human platelets. J Clin Invest. 1979;63(5):1060–1065.
  • Gaspar RS, Trostchansky A, Paes AMDA. Potential role of protein disulfide isomerase in metabolic syndrome-derived platelet hyperactivity. Oxid Med Cell Longev. 2016;2016:2423547. doi:10.1155/2016/2423547
  • Falcon C, Pfliegler G, Deckmyn H, Vermylen J. The platelet insulin receptor: detection, partial characterization, and search for a function. Biochem Biophys Res Commun. 1988;157(3):1190–1196. doi:10.1016/S0006-291X(88)81000-3
  • Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17(1):121. doi:10.1186/s12933-018-0763-3
  • Anfossi G, Russo I, Trovati M. Platelet dysfunction in central obesity. Nutrition, metabolism, and cardiovascular diseases. NMCD. 2009;19(6):440–449. doi:10.1016/j.numecd.2009.01.006
  • Touyz RM, Schiffrin EL. Blunted inhibition by insulin of agonist-stimulated calcium, pH and aggregatory responses in platelets from hypertensive patients. J Hypertens. 1994;12(11):1255–1263. doi:10.1097/00004872-199411000-00008
  • Trovati M, Anfossi G, Massucco P, et al. Insulin stimulates nitric oxide synthesis in human platelets and, through nitric oxide, increases platelet concentrations of both guanosine-3′, 5′-cyclic monophosphate and adenosine-3′, 5′-cyclic monophosphate. Diabetes. 1997;46(5):742–749. doi:10.2337/diab.46.5.742
  • Trovati M, Paola M, Mattiello L, Piretto V, Mularoni E, Anfossi G. The insulin-induced increase of guanosine-3′, 5′-cyclic monophosphate in human platelets is mediated by nitric oxide. Diabetes. 1996;45(6):768–770. doi:10.2337/diab.45.6.768
  • Kakouros N, Rade JJ, Kourliouros A, Resar JR. Platelet function in patients with diabetes mellitus: from a theoretical to a practical perspective. Int J Endocrinol. 2011;2011:742719. doi:10.1155/2011/742719
  • Ferreira IA, Eybrechts KL, Mocking AI, Kroner C, Akkerman J-WN. IRS-1 mediates inhibition of Ca2+ mobilization by insulin via the inhibitory G-protein Gi. J Biol Chem. 2004;279(5):3254–3264. doi:10.1074/jbc.M305474200
  • Hunter R, Hers I. Insulin/IGF‐1 hybrid receptor expression on human platelets: consequences for the effect of insulin on platelet function. J Thromb Haemost. 2009;7(12):2123–2130. doi:10.1111/j.1538-7836.2009.03637.x
  • Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–2443. doi:10.1093/eurheartj/eht149
  • Westerbacka J, Yki-Järvinen H, Turpeinen A, et al. Inhibition of platelet-collagen interaction: an in vivo action of insulin abolished by insulin resistance in obesity. Arterioscler Thromb Vasc Biol. 2002;22(1):167–172. doi:10.1161/hq0102.101546
  • Mayfield RK, Halushka PV, Wohltmann HJ, et al. Platelet function during continuous insulin infusion treatment in insulin-dependent diabetic patients. Diabetes. 1985;34(11):1127–1133. doi:10.2337/diab.34.11.1127
  • Santilli F, Vazzana N, Liani R, Guagnano MT, Davì G. Platelet activation in obesity and metabolic syndrome. Obes Rev. 2012;13(1):27–42. doi:10.1111/j.1467-789X.2011.00930.x
  • Rodriguez BAT, Johnson AD. Platelet measurements and type 2 diabetes: investigations in two population-based cohorts. Front Cardiovasc Med. 2020;7. doi:10.3389/fcvm.2020.00118
  • Morange PE, Alessi MC. Thrombosis in central obesity and metabolic syndrome: mechanisms and epidemiology. Thromb Haemost. 2013;110(4):669–680. doi:10.1160/TH13-01-0075
  • Gerrits AJ, Gitz E, Koekman CA, Visseren FL, van Haeften TW, Akkerman JWN. Induction of insulin resistance by the adipokines resistin, leptin, plasminogen activator inhibitor-1 and retinol binding protein 4 in human megakaryocytes. Haematologica. 2012;97(8):1149. doi:10.3324/haematol.2011.054916
  • Anfossi G, Russo I, Massucco P, et al. Impaired synthesis and action of antiaggregating cyclic nucleotides in platelets from obese subjects: possible role in platelet hyperactivation in obesity. Eur J Clin Invest. 2004;34(7):482–489. doi:10.1111/j.1365-2362.2004.01370.x
  • Russo I, Del Mese P, Doronzo G, et al. Platelet resistance to the antiaggregatory cyclic nucleotides in central obesity involves reduced phosphorylation of vasodilator-stimulated phosphoprotein. Clin Chem. 2007;53(6):1053–1060. doi:10.1373/clinchem.2006.076208
  • Resnick LM. Cellular ions in hypertension, insulin resistance, obesity, and diabetes: a unifying theme. J Am Soc Nephrol. 1992;3(4):S78. doi:10.1681/ASN.V34s78
  • Anfossi G, Russo I, Trovati M. Platelet resistance to the anti-aggregating agents in the insulin resistant states. Curr Diabetes Rev. 2006;2(4):409–430. doi:10.2174/1573399810602040409
  • Santilli F, Simeone P, Liani R, Davì G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat. 2015;120:28–39.
  • Ferroni P, Basili S, Falco A, Davì G. Platelet activation in type 2 diabetes mellitus. J Thromb Haemost. 2004;2(8):1282–1291. doi:10.1111/j.1538-7836.2004.00836.x
  • Chung SS, Ho EC, Lam KS, Chung SK. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol. 2003;14(suppl 3):S233–S6. doi:10.1097/01.ASN.0000077408.15865.06
  • Barale C, Russo I. Influence of cardiometabolic risk factors on platelet function. Int J Mol Sci. 2020;21(2):623. doi:10.3390/ijms21020623
  • Tang WH, Stitham J, Jin Y, et al. Aldose reductase–mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets. Circulation. 2014;129(15):1598–1609. doi:10.1161/CIRCULATIONAHA.113.005224
  • Obydennyy SI, Sveshnikova AN, Ataullakhanov FI, Panteleev MA. Dynamics of calcium spiking, mitochondrial collapse and phosphatidylserine exposure in platelet subpopulations during activation. J Thromb Haemost. 2016;14(9):1867–1881. doi:10.1111/jth.13395
  • Pedreño J, Hurt-Camejo E, Wiklund O, Badimón L, Masana L. Low-density lipoprotein (LDL) binds to a G-protein coupled receptor in human platelets: evidence that the proaggregatory effect induced by LDL is modulated by down-regulation of binding sites and desensitization of its mediated signaling. Atherosclerosis. 2001;155(1):99–112. doi:10.1016/S0021-9150(00)00545-1
  • Randriamboavonjy V. Mechanisms involved in diabetes-associated platelet hyperactivation. In: The Non-Thrombotic Role of Platelets in Health and Disease. IntechOpen; 2015.
  • Fang KC, Cheng YL, Su CW, et al. Higher platelet counts are associated with metabolic syndrome independent of fatty liver diagnosis. J Chin Med Assoc. 2017;80(3):125–132. doi:10.1016/j.jcma.2016.07.003
  • Randriamboavonjy V, Pistrosch F, Bölck B, et al. Platelet sarcoplasmic endoplasmic reticulum Ca2+-ATPase and μ-calpain activity are altered in type 2 diabetes mellitus and restored by rosiglitazone. Circulation. 2008;117(1):52–60. doi:10.1161/CIRCULATIONAHA.107.719807
  • Randriamboavonjy V, Isaak J, Elgheznawy A, et al. Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes. Am J Hematol. 2012;120(2):415–423.
  • Darley-Usmar V, Halliwell B. Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res. 1996;13(5):649–662. doi:10.1023/A:1016079012214
  • Cangemi R, Pignatelli P, Carnevale R, et al. Platelet isoprostane overproduction in diabetic patients treated with aspirin. Diabetes. 2012;61(6):1626–1632. doi:10.2337/db11-1243
  • Lawson JA, FitzGerald GA, Rokach J. Isoprostanes: formation, analysis and use as indices of lipid peroxidation in vivo. J Biol Chem. 1999;274(35):24441–24444. doi:10.1074/jbc.274.35.24441
  • Singh I, Mok M, Christensen A-M, Turner AH, Hawley JA. The effects of polyphenols in olive leaves on platelet function. Nutr Metab Cardiovasc Dis. 2008;18(2):127–132. doi:10.1016/j.numecd.2006.09.001
  • Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–1945. doi:10.2337/diabetes.49.11.1939
  • E-GA M, Abdallah N, Eldars W. Mean platelet volume and platelet distribution width correlate with microvascular complications in Egyptian people with type 2 diabetes mellitus. Curr Diabetes Rev. 2021;17(8):8–15.
  • Bhanukumar M, Ramaswamy PK, Peddi NK, Menon VB. Mean platelet volume and platelet distribution width as markers of vascular thrombosis in type 2 diabetes mellitus. J Postgrad Med. 2016;50(3):127–131. doi:10.5005/jp-journals-10028-1204
  • Park JM, Lee JW, Shim JY, Lee YJ. Relationship between platelet count and insulin resistance in Korean adolescents: a nationwide population-based study. Metab Syndr Relat Disord. 2018;16(9):470–476. doi:10.1089/met.2018.0016
  • Joshi A, Jaison J. Study of platelet parameters-mean platelet volume (mpv) and platelet distribution width (PDW) in type 2 diabetes mellitus. Ann Path Lab Med. 2020;2020:6.
  • Ding Q, Wang F, Guo X, Liang M. The relationship between mean platelet volume and metabolic syndrome in patients with type 2 diabetes mellitus: a retrospective study. Medicine. 2021;100(13):e25303. doi:10.1097/MD.0000000000025303
  • Braester A, Shturman A, Raviv B, Dorosinsky L, Rosental E, Atar S. What a family doctor should know about incidental finding of high mean platelet volume, metabolic syndrome, and pre-diabetes. Isr Med Assoc J. 2021;23(11):699–702.
  • Nardin M, Verdoia M, Barbieri L, De Luca G. Impact of metabolic syndrome on mean platelet volume and its relationship with coronary artery disease. Platelets. 2019;30(5):615–623. doi:10.1080/09537104.2018.1499885
  • Baldane S, Ipekci SH, Kebapcilar A. Relationship between insulin resistance and mean platelet volume in gestational diabetes mellitus. J Lab Physicians. 2015;7(2):112–115. doi:10.4103/0974-2727.163134
  • Zhao F, Yan Z, Meng Z. Relationship between mean platelet volume and metabolic syndrome in Chinese patients. Sci Rep. 2018;8(1):14574. doi:10.1038/s41598-018-32751-1
  • Sansanayudh N, Muntham D, Yamwong S, Sritara P, Akrawichien T, Thakkinstian A. The association between mean platelet volume and cardiovascular risk factors. Eur J Intern Med. 2016;30:37–42. doi:10.1016/j.ejim.2015.11.028
  • Noris P, Melazzini F, Balduini CL. New roles for mean platelet volume measurement in the clinical practice? Platelets. 2016;27(7):607–612. doi:10.1080/09537104.2016.1224828
  • Vizioli L, Muscari S, Muscari A. The relationship of mean platelet volume with the risk and prognosis of cardiovascular diseases. Int J Clin Pract. 2009;63(10):1509–1515. doi:10.1111/j.1742-1241.2009.02070.x
  • Kebapcilar L, Kebapcilar AG, Ilhan TT, et al. Is the mean platelet volume a predictive marker of a low apgar score and insulin resistance in gestational diabetes mellitus? A retrospective case-control study. Oxid Med Cell Longev. 2016;10(10):Oc06–oc10.
  • Yang X-J, Zhang L-Y, Q-H M, et al. Platelet parameters in Chinese older adults with metabolic syndrome. Endocr Connect. 2020;9(7):696–704. doi:10.1530/EC-20-0209
  • Shah B, Sha D, Xie D, Mohler ER, Berger JS. The relationship between diabetes, metabolic syndrome, and platelet activity as measured by mean platelet volume: the national health and nutrition examination survey, 1999–2004. Diabetes Care. 2012;35(5):1074–1078. doi:10.2337/dc11-1724
  • Furman-Niedziejko A, Rostoff P, Rychlak R, et al. Relationship between abdominal obesity, platelet blood count and mean platelet volume in patients with metabolic syndrome. Folia Med Cracov. 2014;54(2):55–64.
  • Lim HJ, Seo MS, Shim JY, Kim KE, Shin YH, Lee YJ. The association between platelet count and metabolic syndrome in children and adolescents. Platelets. 2015;26(8):758–763. doi:10.3109/09537104.2014.995613
  • Kim SH, Reaven G. Obesity and insulin resistance: an ongoing saga. Diabetes. 2010;59(9):2105–2106. doi:10.2337/db10-0766
  • Maury E, Brichard SM, Pataky Z, Carpentier A, Golay A, Bobbioni‐Harsch E. Effect of obesity on growth‐related oncogene factor‐α, thrombopoietin, and tissue inhibitor metalloproteinase‐1 serum levels. Obesity. 2010;18(8):1503–1509. doi:10.1038/oby.2009.464
  • Chen YL, Hung YJ, He CT, et al. Platelet count can predict metabolic syndrome in older women. Platelets. 2015;26(1):31–37. doi:10.3109/09537104.2014.880415
  • Karamouzis I, Pervanidou P, Berardelli R, et al. Enhanced oxidative stress and platelet activation combined with reduced antioxidant capacity in obese prepubertal and adolescent girls with full or partial metabolic syndrome. Horm Metab Res. 2011;43(09):607–613. doi:10.1055/s-0031-1284355
  • Karbiner MS, Sierra L, Minahk C, Fonio MC, de Bruno MP, Jerez S. The role of oxidative stress in alterations of hematological parameters and inflammatory markers induced by early hypercholesterolemia. Life Sci. 2013;93(15):503–508. doi:10.1016/j.lfs.2013.08.003
  • Bonaccio M, Di Castelnuovo A, De Curtis A, et al. Adherence to the Mediterranean diet is associated with lower platelet and leukocyte counts: results from the Moli-sani study. Am J Hematol. 2014;123(19):3037–3044.
  • Zaccardi F, Rocca B, Pitocco D, Tanese L, Rizzi A, Ghirlanda G. Platelet mean volume, distribution width, and count in type 2 diabetes, impaired fasting glucose, and metabolic syndrome: a meta-analysis. Diabetes Metab Res Rev. 2015;31(4):402–410. doi:10.1002/dmrr.2625
  • Tzur I, Barchel D, Izhakian S, et al. Platelet distribution width: a novel prognostic marker in an internal medicine ward. J Community Hosp Intern Med. 2019;9(6):464–470. doi:10.1080/20009666.2019.1688095
  • Patel MS, Miranda-Nieves D, Chen J, Haller CA, Chaikof EL. Targeting P-selectin glycoprotein ligand-1/P-selectin interactions as a novel therapy for metabolic syndrome. Transl Res. 2017;183:1–13. doi:10.1016/j.trsl.2016.11.007
  • André P, Nannizzi-Alaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Am Heart Assoc. 2002;2022:896–899.
  • Poggi M, Engel D, Christ A, et al. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler Thromb Vasc Biol. 2011;31(10):2251–2260. doi:10.1161/ATVBAHA.111.231357
  • Russo I, Traversa M, Bonomo K, et al. In central obesity, weight loss restores platelet sensitivity to nitric oxide and prostacyclin. Obesity. 2010;18(4):788–797. doi:10.1038/oby.2009.302
  • Zahran AM, Sayed SK, Abd El Hafeez HA, Khalifa WA, Mohamed NA, Hetta HF. Circulating microparticle subpopulation in metabolic syndrome: relation to oxidative stress and coagulation markers. Diabetes Metab Syndr Obes. 2019;12:485. doi:10.2147/DMSO.S191750