208
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Can Antidiabetic Medications Affect Telomere Length in Patients with Type 2 Diabetes? A Mini-Review

ORCID Icon
Pages 3739-3750 | Received 02 Jul 2023, Accepted 07 Oct 2023, Published online: 21 Nov 2023

References

  • Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi:10.1016/j.diabres.2021.109119
  • Zhu X, Hu J, Guo H, et al. Effect of metabolic health and obesity phenotype on risk of diabetes mellitus: a population-based longitudinal study. Diabet Metab Synd Obesit. 2021;14:3485–3498. doi:10.2147/DMSO.S317739
  • Chew NWS, Ng CH, Tan DJH, et al. The global burden of metabolic disease: data from 2000 to 2019. Cell Metab. 2023;35:414–428.e3. doi:10.1016/j.cmet.2023.02.003
  • Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging. Cell. 2021;184:306–322. doi:10.1016/j.cell.2020.12.028
  • Cheng F, Carroll L, Joglekar MV, et al. Diabetes, metabolic disease, and telomere length. Lancet Diabet Endocrinol. 2021;9:117–126. doi:10.1016/S2213-8587(20)30365-X
  • López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–278. doi:10.1016/j.cell.2022.11.001
  • Verma AK, Singh P, Al-Saeed FA, et al. Unravelling the role of telomere shortening with ageing and their potential association with diabetes, cancer, and related lifestyle factors. Tissue Cell. 2022;79:101925. doi:10.1016/j.tice.2022.101925
  • Ihara Y, Toyokuni S, Uchida K, et al. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes. 1999;48:927–932. doi:10.2337/diabetes.48.4.927
  • Zhao J, Miao K, Wang H, et al. Association between telomere length and type 2 diabetes mellitus: a meta-analysis. PLoS One. 2013;8:e79993. doi:10.1371/journal.pone.0079993
  • Wang J, Dong X, Cao L, et al. Association between telomere length and diabetes mellitus: a meta-analysis. J Int Med Res. 2016;44:1156–1173. doi:10.1177/0300060516667132
  • Cheng F, Luk AO, Shi M, et al. Shortened leukocyte telomere length is associated with glycemic progression in type 2 diabetes: a prospective and mendelian randomization analysis. Diabetes Care. 2022;45:701–709. doi:10.2337/dc21-1609
  • Kidanie BB, Alem G, Zeleke H, et al. Determinants of diabetic complication among adult diabetic patients in debre markos referral hospital, northwest Ethiopia, 2018: unmatched case control study. Diabet Metab Synd Obesit. 2020;13:237–245. doi:10.2147/DMSO.S237250
  • Cheng F, Luk AO, Wu H, et al. Shortened relative leukocyte telomere length is associated with all-cause mortality in type 2 diabetes- analysis from the Hong Kong diabetes register. Diabetes Res Clin Pract. 2021;173:108649. doi:10.1016/j.diabres.2021.108649
  • Rai S, Badarinath ARS, George A, et al. Association of telomere length with diabetes mellitus and idiopathic dilated cardiomyopathy in a South Indian population: a pilot study. Mutat Res. 2022;874–875:503439. doi:10.1016/j.mrgentox.2021.503439
  • Cheng F, Luk AO, Tam CHT, et al. Shortened relative leukocyte telomere length is associated with prevalent and incident cardiovascular complications in type 2 diabetes: analysis from the Hong Kong diabetes register. Diabetes Care. 2020;43:2257–2265. doi:10.2337/dc20-0028
  • Spigoni V, Aldigeri R, Picconi A, et al. Telomere length is independently associated with subclinical atherosclerosis in subjects with type 2 diabetes: a cross-sectional study. Acta Diabetol. 2016;53:661–667. doi:10.1007/s00592-016-0857-x
  • Adaikalakoteswari A, Balasubramanyam M, Ravikumar R, et al. Association of telomere shortening with impaired glucose tolerance and diabetic macroangiopathy. Atherosclerosis. 2007;195:83–89. doi:10.1016/j.atherosclerosis.2006.12.003
  • Sharma R, Gupta A, Thungapathra M, et al. Telomere mean length in patients with diabetic retinopathy. Sci Rep. 2015;5:18368. doi:10.1038/srep18368
  • Testa R, Olivieri F, Sirolla C, et al. Leukocyte telomere length is associated with complications of Type 2 diabetes mellitus: telomere length and diabetic complications. Diabet Med. 2011;28:1388–1394. doi:10.1111/j.1464-5491.2011.03370.x
  • Tentolouris N, Nzietchueng R, Cattan V, et al. White blood cells telomere length is shorter in males with type 2 diabetes and microalbuminuria. Diabetes Care. 2007;30:2909–2915. doi:10.2337/dc07-0633
  • Khan J, Pernicova I, Nisar K, et al. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabet Endocrinol. 2023;11:261–281.
  • Sunjaya AP, Sunjaya AF. Targeting ageing and preventing organ degeneration with metformin. Diabetes Metab. 2021;47:101203. doi:10.1016/j.diabet.2020.09.009
  • Chen S, Gan D, Lin S, et al. Metformin in aging and aging-related diseases: clinical applications and relevant mechanisms. Theranostics. 2022;12:2722–2740. doi:10.7150/thno.71360
  • Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 2020;32:15–30. doi:10.1016/j.cmet.2020.04.001
  • Chen J, Ou Y, Li Y, et al. Metformin extends C. elegans lifespan through lysosomal pathway. eLife. 2017;6:e31268. doi:10.7554/eLife.31268
  • Martin-Montalvo A, Mercken EM, Mitchell SJ, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192. doi:10.1038/ncomms3192
  • Konopka AR, Laurin JL, Schoenberg HM, et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell. 2019;2019:18.
  • Vigilide Kreutzenberg S, Ceolotto G, Cattelan A, et al. Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial. Nutrit Metabol Card Dis. 2015;25:686–693. doi:10.1016/j.numecd.2015.03.007
  • Garcia-Martin I, Penketh RJA, Janssen AB, et al. Metformin and insulin treatment prevent placental telomere attrition in boys exposed to maternal diabetes. PLoS One. 2018;13:e0208533. doi:10.1371/journal.pone.0208533
  • Ma D, Yu Y, Yu X, et al. The changes of leukocyte telomere length and telomerase activity after sitagliptin intervention in newly diagnosed type 2 diabetes. Diabetes Metab Res Rev. 2015;31:256–261. doi:10.1002/dmrr.2578
  • Cuevas Diaz P, Nicolini H, Nolasco-Rosales GA, et al. Telomere shortening in three diabetes mellitus types in a Mexican sample. Biomedicines. 2023;11:730. doi:10.3390/biomedicines11030730
  • Al-Daghri NM, Abdi S, Sabico S, et al. Gut-derived endotoxin and telomere length attrition in adults with and without type 2 diabetes. Biomolecules. 2021;11:1693. doi:10.3390/biom11111693
  • Al-Thuwaini TM. Association of antidiabetic therapy with shortened telomere length in middle-aged Type 2 diabetic patients. J Diabetes Metab Disord. 2021;20:1161–1168. doi:10.1007/s40200-021-00835-x
  • Huang J, Peng X, Dong K, et al. The association between antidiabetic agents and leukocyte telomere length in the novel classification of type 2 diabetes mellitus. Gerontology. 2021;67:60–68. doi:10.1159/000511362
  • AlDehaini DMB, Al-Bustan SA, Ali ME, et al. Shortening of the leucocytes’ telomeres length in T2DM independent of age and telomerase activity. Acta Diabetol. 2020;57:1287–1295. doi:10.1007/s00592-020-01550-4
  • Liu J, Ge Y, Wu S, et al. Association between antidiabetic agents use and leukocyte telomere shortening rates in patients with type 2 diabetes. Aging. 2019;11:741–755. doi:10.18632/aging.101781
  • Zeng J, Liu H, Ping F, et al. Insulin treatment affects leukocyte telomere length in patients with type 2 diabetes: 6-year longitudinal study. J Diabetes Complications. 2019;33:363–367. doi:10.1016/j.jdiacomp.2019.02.003
  • Rosa ECCC, Dos Santos RRC, Fernandes LFA, et al. Leukocyte telomere length correlates with glucose control in adults with recently diagnosed type 2 diabetes. Diabetes Res Clin Pract. 2018;135:30–36. doi:10.1016/j.diabres.2017.10.020
  • Robb-MacKay C. The Effect of Metformin on Absolute Telomere Length. Lakehead University; 2018.
  • Gilfillan C, Naidu P, Gunawan F, et al. Leukocyte telomere length in the neonatal offspring of mothers with gestational and pre-gestational diabetes. PLoS One. 2016;11:e0163824. doi:10.1371/journal.pone.0163824
  • Tamura Y, Izumiyama-Shimomura N, Kimbara Y, et al. β-cell telomere attrition in diabetes: inverse correlation between HbA1c and telomere length. J Clin Endocrinol Metab. 2014;99:2771–2777. doi:10.1210/jc.2014-1222
  • Salpea KD, Talmud PJ, Cooper JA, et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2010;209:42–50. doi:10.1016/j.atherosclerosis.2009.09.070
  • Mushtaq A, Azam U, Mehreen S, et al. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: recent developments and future challenges. Eur J Med Chem. 2023;249:115119. doi:10.1016/j.ejmech.2023.115119
  • Haran JP, McCormick BA. Aging, frailty, and the microbiome—how dysbiosis influences human aging and disease. Gastroenterology. 2021;160:507–523. doi:10.1053/j.gastro.2020.09.060
  • Kim KH, Chung Y, Huh J-W, et al. Gut microbiota of the young ameliorates physical fitness of the aged in mice. Microbiome. 2022;10:238. doi:10.1186/s40168-022-01386-w
  • Badal VD, Vaccariello ED, Murray ER, et al. The gut microbiome, aging, and longevity: a systematic review. Nutrients. 2020;12:3759. doi:10.3390/nu12123759
  • Gu Y, Wang X, Li J, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun. 2017;8:1785. doi:10.1038/s41467-017-01682-2
  • Ni Y, Yang X, Zheng L, et al. Lactobacillus and bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol Nutr Food Res. 2019;63:1900603. doi:10.1002/mnfr.201900603
  • Lew LC, Hor YY, Jaafar MH, et al. Lactobacilli modulated AMPK activity and prevented telomere shortening in ageing rats. Benef Microbes. 2019;10:883–892. doi:10.3920/BM2019.0058
  • Hor -Y-Y, Ooi C-H, Khoo B-Y, et al. Lactobacillus strains alleviated aging symptoms and aging-induced metabolic disorders in aged rats. J Med Food. 2019;22:1–13. doi:10.1089/jmf.2018.4229
  • Andreadi A, Bellia A, Di Daniele N, et al. The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: a target for new therapies against cardiovascular diseases. Curr Opin Pharmacol. 2022;62:85–96. doi:10.1016/j.coph.2021.11.010
  • Armstrong E, Boonekamp J. Does oxidative stress shorten telomeres in vivo? A meta-analysis. Ageing Res Rev. 2023;85:101854. doi:10.1016/j.arr.2023.101854
  • Han T, Yuan T, Liang X, et al. Sarcopenic obesity with normal body size may have higher insulin resistance in elderly patients with type 2 diabetes mellitus. Diabet Metab Synd Obesit. 2022;15:1197–1206. doi:10.2147/DMSO.S360942
  • Båvenholm PN, Efendic S. Postprandial hyperglycaemia and vascular damage - The benefits of acarbose. Diabet Vascul Dis Res. 2006;3:72–79. doi:10.3132/dvdr.2006.017
  • Rösen P, Osmers A. Oxidative stress in young Zucker rats with impaired glucose tolerance is diminished by acarbose. Horm Metab Res. 2006;38:575–586. doi:10.1055/s-2006-950397
  • Scott LJ. Sitagliptin: a Review in Type 2 Diabetes. Drugs. 2017;77:209–224. doi:10.1007/s40265-016-0686-9
  • Costes S, Bertrand G, Ravier MA. Mechanisms of beta-cell apoptosis in type 2 diabetes-prone situations and potential protection by GLP-1-based therapies. IJMS. 2021;22:5303. doi:10.3390/ijms22105303
  • Khalangot M, Krasnienkov D, Vaiserman A. Telomere length in different metabolic categories: clinical associations and modification potential. Exp Biol Med. 2020;245:1115–1121. doi:10.1177/1535370220931509
  • Rosen J, Jakobs P, Ale-Agha N, et al. Non-canonical functions of telomerase reverse transcriptase – impact on redox homeostasis. Redox Biol. 2020;34:101543. doi:10.1016/j.redox.2020.101543
  • Wilcox T, De Block C, Schwartzbard AZ, et al. Diabetic agents, from metformin to SGLT2 inhibitors and GLP1 receptor agonists. J Am Coll Cardiol. 2020;75:1956–1974. doi:10.1016/j.jacc.2020.02.056
  • Khunti K, Chatterjee S, Gerstein HC, et al. Do sulphonylureas still have a place in clinical practice? Lancet Diabet Endocrinol. 2018;6:821–832. doi:10.1016/S2213-8587(18)30025-1
  • Lv W, Wang X, Xu Q, et al. Mechanisms and characteristics of sulfonylureas and glinides. CTMC. 2020;20:37–56. doi:10.2174/1568026620666191224141617
  • Ahmed W, Lingner J. Impact of oxidative stress on telomere biology. Differentiation. 2018;99:21–27. doi:10.1016/j.diff.2017.12.002
  • Edens MA, Van Dijk PR, Hak E, et al. Determinants of excessive weight gain after the initiation of insulin therapy in type 2 diabetes mellitus: retrospective inception cohort study (ZODIAC 60). Diabetes Res Clin Pract. 2023;200:110719. doi:10.1016/j.diabres.2023.110719
  • Verkouter I, Noordam R, Le Cessie S, et al. The association between adult weight gain and insulin resistance at middle age: mediation by visceral fat and liver fat. JCM. 2019;8:1559. doi:10.3390/jcm8101559
  • Ferri-Guerra J, Aparicio-Ugarriza R, Mohammed YN, et al. Propensity score matching to determine the impact of metformin on all-cause mortality in older veterans with diabetes mellitus. South Med J. 2022;115:208–213. doi:10.14423/SMJ.0000000000001363
  • Wang C-P, Lorenzo C, Habib SL, et al. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. J Diabetes Complications. 2017;31:679–686. doi:10.1016/j.jdiacomp.2017.01.013
  • Palacios JA, Herranz D, De Bonis ML, et al. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 2010;191:1299–1313. doi:10.1083/jcb.201005160
  • Osum M, Serakinci N. Impact of circadian disruption on health; SIRT1 and Telomeres. DNA Repair (Amst). 2020;96:102993. doi:10.1016/j.dnarep.2020.102993
  • Han X, Ding C, Sang X, et al. Targeting Sirtuin1 to treat aging-related tissue fibrosis: from prevention to therapy. Pharmacol Ther. 2022;229:107983. doi:10.1016/j.pharmthera.2021.107983
  • Amano H, Chaudhury A, Rodriguez-Aguayo C, et al. Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease. Cell Metab. 2019;29:1274–1290.e9. doi:10.1016/j.cmet.2019.03.001
  • El Ramy R, Magroun N, Messadecq N, et al. Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cell Mol Life Sci. 2009;66:3219–3234. doi:10.1007/s00018-009-0105-4
  • Diman A, Boros J, Poulain F, et al. Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription. Sci Adv. 2016;2:e1600031. doi:10.1126/sciadv.1600031
  • Brown E, Heerspink HJL, Cuthbertson DJ, et al. SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. Lancet. 2021;398:262–276. doi:10.1016/S0140-6736(21)00536-5
  • Kitasato L, Tojo T, Hatakeyama Y, et al. Postprandial hyperglycemia and endothelial function in type 2 diabetes: focus on mitiglinide. Cardiovasc Diabetol. 2012;11:79. doi:10.1186/1475-2840-11-79