0
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Role of Decreased Expression of miR-155 and miR-146a in Peripheral Blood of Type 2 Diabetes Mellitus Patients with Diabetic Peripheral Neuropathy

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 2747-2760 | Received 28 Mar 2024, Accepted 16 Jul 2024, Published online: 23 Jul 2024

References

  • GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021 [published correction appears in Lancet. 2023 Sep 30;402(10408):1132]. Lancet. 2023;402(10397):203–234. doi10.1016/S0140-6736(23)01301-6
  • Magliano DJ, Boyko EJ; IDF Diabetes Atlas 10th edition scientific committee. IDF Diabetes Atlas. 10th ed. International Diabetes Federation: Brussels; 2021.
  • Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol. 2020;18(2):117–124. doi:10.2174/1570161117666190502103733
  • Zhang Y, Lazzarini PA, McPhail SM, van Netten JJ, Armstrong DG, Pacella RE. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care. 2020;43(5):964–974. doi:10.2337/dc19-1614
  • Eid SA, Rumora AE, Beirowski B, et al. New perspectives in diabetic neuropathy. Neuron. 2023;111(17):2623–2641. doi:10.1016/j.neuron.2023.05.003
  • Feng J, Xing W, Xie L. Regulatory roles of MicroRNAs in diabetes. Int J Mol Sci. 2016;17(10):1729. doi:10.3390/ijms17101729
  • Papadopoulos KI, Papadopoulou A, Aw TC. Beauty and the beast: host microRNA-155 versus SARS-CoV-2. Hum Cell. 2023;36(3):908–922. doi:10.1007/s13577-023-00867-w
  • Palihaderu P, Mendis B, Premarathne J, et al. Therapeutic potential of miRNAs for type 2 diabetes mellitus: an overview. Epigenet Insights. 2022;15:25168657221130041.
  • Jankauskas SS, Gambardella J, Sardu C, Lombardi A, Santulli G. Functional role of miR-155 in the pathogenesis of diabetes mellitus and its complications. Noncoding RNA. 2021;7(3):39. doi:10.3390/ncrna7030039
  • Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr. 2020;12:14. doi:10.1186/s13098-020-0523-x
  • Frantz EDC, Prodel E, Braz ID, et al. Modulation of the renin-angiotensin system in white adipose tissue and skeletal muscle: focus on exercise training. Clin Sci. 2018;132(14):1487–1507. doi:10.1042/CS20180276
  • Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta. 2009;1792(6):497–505. doi:10.1016/j.bbadis.2009.02.013
  • Leinders M, Üçeyler N, Thomann A, Sommer C. Aberrant microRNA expression in patients with painful peripheral neuropathies. J Neurol Sci. 2017;380:242–249. doi:10.1016/j.jns.2017.07.041
  • Chen J, Liu W, Yi H, Hu X, Peng L, Yang F. MicroRNA-155 mimics ameliorates nerve conduction velocities and suppresses hyperglycemia-induced pro-inflammatory genes in diabetic peripheral neuropathic mice. Am J Transl Res. 2019;11(6):3905–3918.
  • Olivieri F, Prattichizzo F, Giuliani A, et al. miR-21 and miR-146a: the microRNAs of inflammaging and age-related diseases. Ageing Res Rev. 2021;70:101374. doi:10.1016/j.arr.2021.101374
  • Balasubramanyam M, Aravind S, Gokulakrishnan K, et al. Impaired miR-146a expression links subclinical inflammation and insulin resistance in type 2 diabetes. Mol Cell Biochem. 2011;351(1–2):197–205. doi:10.1007/s11010-011-0727-3
  • Alipoor B, Ghaedi H, Meshkani R, et al. Association of miR-146a expression and type 2 diabetes mellitus: a meta-analysis. Int J Mole Cell Med. 2017;6(3):156–163. doi:10.22088/acadpub.BUMS.6.3.156
  • García-Jacobo RE, Uresti-Rivera EE, Portales-Pérez DP, et al. Circulating miR-146a, miR-34a and miR-375 in type 2 diabetes patients, pre-diabetic and normal-glycaemic individuals in relation to β-cell function, insulin resistance and metabolic parameters. Clin Exp Pharmacol Physiol. 2019;46(12):1092–1100. doi:10.1111/1440-1681.13147
  • Morais Junior GS, Souza VC, Machado-Silva W, et al. Acute strength training promotes responses in whole blood circulating levels of miR-146a among older adults with type 2 diabetes mellitus. Clin Interv Aging. 2017;12:1443–1450. doi:10.2147/CIA.S141716
  • Wang L, Chopp M, Szalad A, et al. The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience. 2014;259:155–163. doi:10.1016/j.neuroscience
  • Liu XS, Fan B, Szalad A, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes. 2017;66(12):3111–3121. doi:10.2337/db16-1182
  • Luo Q, Feng Y, Xie Y, et al. Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomed Nanotechnol Biol Med. 2019;17:188–197. doi:10.1016/j.nano.2019.01.007
  • ElSayed NA, Aleppo G, Aroda VR, et al. 2. Classification and diagnosis of diabetes: standards of care in diabetes-2023 [published correction appears in Diabetes Care. 2023 May 1;46(5):1106.] [published correction appears in Diabetes Care. Diabetes Care. 2023 Sep 1;46(9):1715]. Diabetes Care. 2023;46(Suppl 1):S19–S40. doi:10.2337/dc23-S002
  • Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments [published correction appears in Diabetes Care. 2010 Dec; 33(12):2725]. Diabetes Care. 2010;33(10):2285–2293. doi:10.2337/dc10-1303
  • American Diabetes Association. 11. Microvascular complications and foot care: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S124–S138. doi10.2337/dc19-S011
  • Papanas N, Ziegler D. Risk factors and comorbidities in diabetic neuropathy: an update 2015. Rev Diabet Stud. 2015;12(1–2):48–62. doi:10.1900/RDS.2015.12.48
  • Liu J, Yuan X, Liu J, et al. Risk factors for diabetic peripheral neuropathy, peripheral artery disease, and foot deformity among the population with diabetes in Beijing, China: a multicenter, cross-sectional study. Front Endocrinol. 2022;13:824215. doi:10.3389/fendo.2022.824215
  • Palella E, Cimino R, Pullano SA, et al. Laboratory parameters of hemostasis, adhesion molecules, and inflammation in type 2 diabetes mellitus: correlation with glycemic control. Int J Environ Res Public Health. 2020;17:300. doi:10.3390/ijerph17010300
  • Jiang W, Kong L, Ni Q, et al. miR-146a ameliorates liver ischemia/reperfusion injury by suppressing IRAK1 and TRAF6 [published correction appears in PLoS One. 2023 Jul 11;18(7):e0288672]. PLoS One. 2014;9(7):e101530. doi:10.1371/journal.pone.0101530
  • Li K, Zhao B, Wei D, et al. miR‑146a improves hepatic lipid and glucose metabolism by targeting MED1. Int J Mol Med. 2020;45(2):543–555. doi:10.3892/ijmm.2019.4443
  • Ouyang Y, Fu X, Tan D, Peng S, Fu L. Expressions of miR-146a and miR-155 in different samples of chronic hepatitis B patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019;44(8):845–849. doi:10.11817/j.issn.1672-7347.2019.190366
  • Zou Y, Cai Y, Lu D, Zhou Y, Yao Q, Zhang S. MicroRNA-146a-5p attenuates liver fibrosis by suppressing profibrogenic effects of TGFβ1 and lipopolysaccharide. Cell Signal. 2017;39:1–8. doi:10.1016/j.cellsig.2017.07.016
  • Xu M, Li Y, Tang Y, Zhao X, Xie D, Chen M. Increased expression of miR-155 in peripheral blood and wound margin tissue of type 2 diabetes mellitus patients associated with diabetic foot ulcer. Diabetes Metab Syndr Obes. 2022;15:3415–3428. doi:10.2147/DMSO.S376292
  • Chen J, Li C, Liu W, Yan B, Hu X, Yang F. miRNA-155 silencing reduces sciatic nerve injury in diabetic peripheral neuropathy. J Mol Endocrinol. 2019;63(3):227–238. doi:10.1530/JME-19-0067
  • El-Lithy GM, El-Bakly WM, Matboli M, Abd-Alkhalek HA, Masoud SI, Hamza M. Prophylactic L-arginine and ibuprofen delay the development of tactile allodynia and suppress spinal miR-155 in a rat model of diabetic neuropathy. Transl Res. 2016;177:85–97.e1. doi:10.1016/j.trsl.2016.06.005
  • Fan B, Chopp M, Zhang ZG, Liu XS. Treatment of diabetic peripheral neuropathy with engineered mesenchymal stromal cell-derived exosomes enriched with microRNA-146a provide amplified therapeutic efficacy. Exp Neurol. 2021;341:113694. doi:10.1016/j.expneurol.2021.113694
  • Lu Y, Cao DL, Jiang BC, Yang T, Gao YJ. MicroRNA-146a-5p attenuates neuropathic pain via suppressing TRAF6 signaling in the spinal cord. Brain Behav Immun. 2015;49:119–129. doi:10.1016/j.bbi.2015.04.018
  • Wang Z, Liu F, Wei M, et al. Chronic constriction injury-induced microRNA-146a-5p alleviates neuropathic pain through suppression of IRAK1/TRAF6 signaling pathway. J Neuroinflammation. 2018;15(1):179. doi:10.1186/s12974-018-1215-4
  • Grace PM, Strand KA, Galer EL, Maier SF, Watkins LR. MicroRNA-124 and microRNA-146a both attenuate persistent neuropathic pain induced by morphine in male rats. Brain Res. 2018;1692:9–11. doi:10.1016/j.brainres.2018.04.038
  • Dezfuli NK, Alipoor SD, Dalil Roofchayee N, et al. Evaluation expression of miR-146a and miR-155 in non-small-cell lung cancer patients. Front Oncol. 2021;11:715677. doi:10.3389/fonc.2021.715677
  • Jurkovicova D, Magyerkova M, Kulcsar L, et al. miR-155 as a diagnostic and prognostic marker in hematological and solid malignancies. Neoplasma. 2014;61(3):241–251. doi:10.4149/neo_2014_032