71
Views
1
CrossRef citations to date
0
Altmetric
Review

MeCP2 in the regulation of neural activity: Rett syndrome pathophysiological perspectives

, , &
Pages 103-116 | Published online: 14 Oct 2015

References

  • Chahrour M, Jung SY, Shaw C, et al MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320:1224–1229.18511691
  • Zachariah RM, Rastegar M. Linking epigenetics to human disease and Rett syndrome: the emerging novel and challenging concepts in MeCP2 research. Neural Plast. 2012;2012:415825.22474603
  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MeCP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–188.10508514
  • Neul JL, Fang P, Barrish J, et al Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology. 2008;70:1313–1321.18337588
  • Cuddapah VA, Pillai RB, Shekar KV, et al Methyl-CpG-binding protein 2 (MeCP2) mutation type is associated with disease severity in Rett syndrome. J Med Genet. 2014;51:152–158.24399845
  • Gibson JH, Williamson SL, Arbuckle S, Christodoulou J. X chromosome inactivation patterns in brain in Rett syndrome: implications for the disease phenotype. Brain Dev. 2005;27:266–270.15862188
  • Schanen C, Houwink EJ, Dorrani N, et al Phenotypic manifestations of MeCP2 mutations in classical and atypical Rett syndrome. Am J Med Genet A. 2004;126A:129–140.15057977
  • Augenstein K, Lane JB, Horton A, Schanen C, Percy AK. Variable phenotypic expression of a MeCP2 mutation in a family. J Neurodev Disord. 2009;1:313.20151026
  • Kankirawatana P, Leonard H, Ellaway C, et al Early progressive encephalopathy in boys and MeCP2 mutations. Neurology. 2006;67: 164–166.16832102
  • Schwartzman JS, Bernardino A, Nishimura A, Gomes RR, Zatz M. Rett syndrome in a boy with a 47, XXY karyotype confirmed by a rare mutation in the MeCP2 gene. Neuropediatrics. 2001;32:162–164.11521215
  • Friez MJ, Jones JR, Clarkson K, et al Recurrent infections, hypotonia, and mental retardation caused by duplication of MeCP2 and adjacent region in Xq28. Pediatrics. 2006;118:e1687–e1695.17088400
  • Van Esch H, Bauters M, Ignatius J, et al Duplication of the MeCP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet. 2005;77: 442–453.16080119
  • del Gaudio D, Fang P, Scaglia F, et al Increased MeCP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med. 2006;8:784–792.17172942
  • Collins AL, Levenson JM, Vilaythong AP, et al Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet. 2004;13:2679–2689.15351775
  • Ramocki MB, Peters SU, Tavyev YJ, et al Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol. 2009;66:771–782.20035514
  • Ramocki MB, Tavyev YJ, Peters SU. The MeCP2 duplication syndrome. Am J Med Genet A. 2010;152A:1079–1088.
  • Weaving LS, Christodoulou J, Williamson SL, et al Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet. 2004;75:1079–1093.15492925
  • Mari F, Azimonti S, Bertani I, et al CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet. 2005;14:1935–1946.15917271
  • Ariani F, Hayek G, Rondinella D, et al FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet. 2008;83:89–93.18571142
  • Rett A. Uber ein eigenartiges hirnatrophisches Syndrom bei Hyperammonamie im Kindesalter [On a unusual brain atrophy syndrome in hyperammonemia in childhood]. Wien Med Wochenschr. 1966;116:723–726.5300597
  • Hagberg B, Aicardi J, Dias K, Ramos O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol. 1983;14:471–479.6638958
  • Hagberg B. Clinical manifestations and stages of Rett syndrome. Ment Retard Dev Disabil Res Rev. 2002;8:61–65.12112728
  • Trevathan E, Naidu S. The clinical recognition and differential diagnosis of Rett syndrome. J Child Neurol. 1988;3(Suppl):S6–S16.3058788
  • Neul JL, Kaufmann WE, Glaze DG, et al Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol. 2010;68:944–950.21154482
  • Jellinger K, Armstrong D, Zoghbi HY, Percy AK. Neuropathology of Rett syndrome. Acta Neuropathol. 1988;76:142–158.2900587
  • Armstrong DD. Neuropathology of Rett syndrome. Ment Retard Dev Disabil Res Rev. 2002;8:72–76.12112730
  • Laurvick CL, de Klerk N, Bower C. Rett syndrome in Australia: a review of the epidemiology. J Pediatr. 2006;148:347–352.16615965
  • Marschik PB, Kaufmann WE, Sigafoos J, et al Changing the perspective on early development of Rett syndrome. Res Dev Disabil. 2013;34:1236–1239.23400005
  • Neul JL, Lane JB, Lee HS, et al Developmental delay in Rett syndrome: data from the natural history study. J Neurodev Disord. 2014;6:20.25071871
  • Schultz RJ, Glaze DG, Motil KJ, et al The pattern of growth failure in Rett syndrome. Am J Dis Child. 1993;147:633–637.8506830
  • Tarquinio DC, Motil KJ, Hou W, et al Growth failure and outcome in Rett syndrome: specific growth references. Neurology. 2012;79:1653–1661.23035069
  • Glaze DG, Percy AK, Skinner S, et al Epilepsy and the natural history of Rett syndrome. Neurology. 2010;74:909–912.20231667
  • Lugaresi E, Cirignotta F, Montagna P. Abnormal breathing in the Rett syndrome. Brain Dev. 1985;7:329–333.4061768
  • Percy AK, Glaze DG, Schultz RJ, et al Rett syndrome: controlled study of an oral opiate antagonist, naltrexone. Ann Neurol. 1994;35:464–470.8154874
  • Julu PO, Kerr AM, Apartopoulos F, et al Characterisation of breathing and associated central autonomic dysfunction in the Rett disorder. Arch Dis Child. 2001;85:29–37.11420195
  • Motil KJ, Caeg E, Barrish JO, et al Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with Rett syndrome. J Pediatr Gastroenterol Nutr. 2012;55:292–298.22331013
  • Percy AK, Lee HS, Neul JL, et al Profiling scoliosis in Rett syndrome. Pediatr Res. 2010;67:435–439.20032810
  • Belichenko PV, Hagberg B, Dahlstrom A. Morphological study of neocortical areas in Rett syndrome. Acta Neuropathol. 1997;93:50–61.9006657
  • Armstrong D, Dunn JK, Antalffy B, Trivedi R. Selective dendritic alterations in the cortex of Rett syndrome. J Neuropathol Exp Neurol. 1995;54:195–201.7876888
  • Chao HT, Zoghbi HY, Rosenmund C. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron. 2007;56:58–65.17920015
  • Tropea D, Giacometti E, Wilson NR, et al Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A. 2009;106:2029–2034.19208815
  • Maliszewska-Cyna E, Bawa D, Eubanks JH. Diminished prevalence but preserved synaptic distribution of N-methyl-D-aspartate receptor subunits in the methyl CpG binding protein 2 (MeCP2)-null mouse brain. Neuroscience. 2010;168:624–632.20381590
  • Dani VS, Nelson SB. Intact long-term potentiation but reduced connectivity between neocortical layer 5 pyramidal neurons in a mouse model of Rett syndrome. J Neurosci. 2009;29:11263–11270.19741133
  • Kishi N, Macklis JD. MeCP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci. 2004;27:306–321.15519245
  • Nguyen MV, Du F, Felice CA, et al MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain. J Neurosci. 2012;32:10021–10034.22815516
  • McGraw CM, Samaco RC, Zoghbi HY. Adult neural function requires MeCP2. Science. 2011;333:186.21636743
  • Ebert DH, Gabel HW, Robinson ND, et al Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature. 2013;499:341–345.23770587
  • Castro J, Garcia RI, Kwok S, et al Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett Syndrome. Proc Natl Acad Sci U S A. 2014;111:9941–9946.24958891
  • Pitcher MR, Ward CS, Arvide EM, et al Insulinotropic treatments exacerbate metabolic syndrome in mice lacking MeCP2 function. Hum Mol Genet. 2013;22:2626–2633.23462290
  • Moretti P, Levenson JM, Battaglia F, et al Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci. 2006;26:319–327.16399702
  • Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science. 2007;315:1143–1147.17289941
  • Asaka Y, Jugloff DGM, Zhang L, Eubanks JH, Fitzsimonds RM. Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis. 2006;21:217–227.16087343
  • D’Cruz JA, Wu C, Zahid T, El-Hayek Y, Zhang L, Eubanks JH. Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice. Neurobiol Dis. 2010;38:8–16.20045053
  • Chen WG, Chang Q, Lin Y, et al Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science. 2003;302:885–889.14593183
  • Chang Q, Khare G, Dani V, Nelson S, Jaenisch R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron. 2006;49:341–348.16446138
  • Deng V, Matagne V, Banine F, et al FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Hum Mol Genet. 2007;16:640–650.17309881
  • Martinowich K, Hattori D, Wu H, et al DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science. 2003;302:890–893.14593184
  • Li W, Calfa G, Larimore J, Pozzo-Miller L. Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice. Proc Natl Acad Sci U S A. 2012;109: 17087–17092.23027959
  • Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A. 2005;102:12560–12565.16116096
  • Ballas N, Lioy DT, Grunseich C, Mandel G. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci. 2009;12:311–317.19234456
  • Wood L, Gray NW, Zhou Z, Greenberg ME, Shepherd GM. Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an RNA interference model of methyl-CpG-binding protein 2 deficiency. J Neurosci. 2009;29:12440–12448.19812320
  • Durand S, Patrizi A, Quast KB, et al NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2. Neuron. 2012;76:1078–1090.23259945
  • Colic S, Wither R, Eubanks JH, Zhang L, Bardakjian BL. EEG analysis for estimation of duration and inter-event intervals of seizure-like events recorded in vivo from mice. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:2570–2573.22254866
  • Chao HT, Chen H, Samaco RC, et al Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468:263–269.21068835
  • Zhang L, He J, Jugloff DGM, Eubanks JH. The MeCP2-null mouse hippocampus displays altered basal inhibitory rhythms and is prone to hyperexcitability. Hippocampus. 2008;18:294–309.18058824
  • McLeod F, Ganley R, Williams L, Selfridge J, Bird A, Cobb SR. Reduced seizure threshold and altered network oscillatory properties in a mouse model of Rett syndrome. Neuroscience. 2013;231: 195–205.23238573
  • Calfa G, Hablitz JJ, Pozzo-Miller L. Network hyperexcitability in hippocampal slices from Mecp2 mutant mice revealed by voltage-sensitive dye imaging. J Neurophysiol. 2011;105:1768–1784.21307327
  • Kline DD, Ogier M, Kunze DL, Katz DM. Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice. J Neurosci. 2010;30:5303–5310.20392952
  • Taneja P, Ogier M, Brooks-Harris G, Schmid DA, Katz DM, Nelson SB. Pathophysiology of locus ceruleus neurons in a mouse model of Rett syndrome. J Neurosci. 2009;29:12187–12195.19793977
  • Zanella S, Mebarek S, Lajard AM, Picard N, Dutschmann M, Hilaire G. Oral treatment with desipramine improves breathing and life span in Rett syndrome mouse model. Respir Physiol Neurobiol. 2008;160: 116–121.17905670
  • Roux JC, Dura E, Moncla A, Mancini J, Villard L. Treatment with desipramine improves breathing and survival in a mouse model for Rett syndrome. Eur J Neurosci. 2007;25:1915–1922.17439480
  • Medrihan L, Tantalaki E, Aramuni G, et al Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. J Neurophysiol. 2008;99:112–121.18032561
  • Abdala APL, Dutschmann M, Bissonnette JM, Paton JFR. Correction of respiratory disorders in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A. 2010;107:18208–18213.20921395
  • Jian L, Nagarajan L, de Klerk N, Ravine D, Christodoulou J, Leonard H. Seizures in Rett syndrome: an overview from a one-year calendar study. Eur J Paediatr Neurol. 2007;11:310–317.17433737
  • Bahi-Buisson N, Guellec I, Nabbout R, et al Parental view of epilepsy in Rett syndrome. Brain Dev. 2008;30:126–130.17707604
  • Luikenhuis S, Giacometti E, Beard CF, Jaenisch R. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci U S A. 2004;101:6033–6038.15069197
  • Klein C, Kramer EM, Cardine AM, Schraven B, Brandt R, Trotter J. Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J Neurosci. 2002;22: 698–707.11826099
  • Zhang Y, Chen K, Sloan SA, et al An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–11947.25186741
  • Giacometti E, Luikenhuis S, Beard C, Jaenisch R. Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci U S A. 2007;104:1931–1936.17267601
  • Alvarez-Saavedra M, Saez MA, Kang D, Zoghbi HY, Young JI. Cell-specific expression of wild-type MeCP2 in mouse models of Rett syndrome yields insight about pathogenesis. Hum Mol Genet. 2007;16:2315–2325.17635839
  • Jugloff DG, Vandamme K, Logan R, Visanji NP, Brotchie JM, Eubanks JH. Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice. Hum Mol Genet. 2008;17:1386–1396.18223199
  • Garg SK, Lioy DT, Cheval H, et al Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J Neurosci. 2013;33a:13612–13620.
  • Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001;27:327–331.11242118
  • Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM. Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry. 2006;59:468–476.16199017
  • Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet. 2002;11:115–124.11809720
  • Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci. 2009;29:5051–5061.19386901
  • Maezawa I, Jin LW. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci. 2010;30: 5346–5356.20392956
  • Nguyen MV, Felice CA, Du F, et al Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J Neurosci. 2013;33:18764–18774.24285883
  • Lioy DT, Garg SK, Monaghan CE, et al A role for glia in the progression of Rett’s syndrome. Nature. 2011;475:497–500.21716289
  • Schmid RS, Tsujimoto N, Qu Q, et al A methyl-CpG-binding protein 2-enhanced green fluorescent protein reporter mouse model provides a new tool for studying the neuronal basis of Rett syndrome. Neuroreport. 2008;19:393–398.18287934
  • Williams EC, Zhong X, Mohamed A, et al Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet. 2014;23:2968–2980.24419315
  • Jin LW, Horiuchi M, Wulff H, et al Dysregulation of glutamine transporter SNAT1 in Rett syndrome microglia: a mechanism for mitochondrial dysfunction and neurotoxicity. J Neurosci. 2015;35:2516–2529.25673846
  • Derecki NC, Cronk JC, Lu Z, et al Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature. 2012;484:105–109.22425995
  • Wang J, Wegener JE, Huang TW, et al Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature. 2015;521:E1–E4.25993969
  • Pini G, Scusa MF, Congiu L, et al IGF1 as a potential treatment for rett syndrome: safety assessment in six Rett patients. Autism Res Treat. 2012;2012:679801.22934177
  • Aharoni R, Teitelbaum D, Sela M, Arnon R. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 1997;94:10821–10826.9380718
  • Aharoni R, Eilam R, Domev H, Labunskay G, Sela M, Arnon R. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A. 2005;102: 19045–19050.16365293
  • Ben-Zeev B, Aharoni R, Nissenkorn A, Arnon R. Glatiramer acetate (GA, Copolymer-1) an hypothetical treatment option for Rett syndrome. Med Hypotheses. 2011;76:190–193.20951500
  • Deogracias R, Yazdani M, Dekkers MP, et al Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci U S A. 2012;109:14230–14235.22891354
  • Viemari JC, Roux JC, Tryba AK, et al Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice. J Neurosci. 2005;25:11521–11530.16354910
  • Jaffe DB, Marks SS, Greenberg DA. Antagonist drug selectivity for radioligand binding sites on voltage-gated and N-methyl-D-aspartate receptor-gated Ca2+ channels. Neurosci Lett. 1989;105:227–232.2562062
  • Werling LL, Lauterbach EC, Calef U. Dextromethorphan as a potential neuroprotective agent with unique mechanisms of action. Neurologist. 2007;13:272–293.17848867
  • Freilinger M, Dunkler D, Lanator I, et al Effects of creatine supplementation in Rett syndrome: a randomized, placebo-controlled trial. J Dev Behav Pediatr. 2011;32:454–460.21654506
  • Lane JB, Lee HS, Smith LW, et al Clinical severity and quality of life in children and adolescents with Rett syndrome. Neurology. 2011;77: 1812–1818.22013176