502
Views
35
CrossRef citations to date
0
Altmetric
Review

Optical Coherence Tomography Angiography in Neurodegenerative Diseases: A Review

, , , & ORCID Icon
Pages 73-87 | Published online: 14 Jul 2020

References

  • Roisman L, Goldhardt R. OCT angiography: an upcoming non-invasive tool for diagnosis of age-related macular degeneration. Curr Ophthalmol Rep. 2017;5:136–140. doi:10.1007/s40135-017-0131-629051844
  • Balaratnasingam C, Yannuzzi LA, Spaide RF. Possible choroidal neovacularization in macular telangiectasia type 2. Retina. 2015;35:2317–2322. doi:10.1097/IAE.000000000000088726465619
  • Coscas F, Glacet-Bernard A, Miere A, et al. Optical coherence tomography angiography in retinal vein occlusion: evaluation of superficial and deep capillary plexa. Am J Ophthalmol. 2016;161:160–167. doi:10.1016/j.ajo.2015.10.00826476211
  • Wakabayashi T, Sato T, Hara-Ueno C, et al. Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography. Invest Opthalmol Vis Sci. 2017;58:2087. doi:10.1167/iovs.16-21208
  • Spaide RF. Volume-rendered optical coherence tomography of diabetic retinopathy pilot study. Am J Ophthalmol. 2015;160:1200–1210. doi:10.1016/j.ajo.2015.09.01026384548
  • Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–1332. doi:10.1016/j.ophtha.2014.01.02124629312
  • Wang L, Murphy O, Caldito NG, Calabresi PA, Saidha S. Emerging applications of Optical Coherence Tomography Angiography (OCTA) in neurological research. Eye Vis. 2018;5:11. doi:10.1186/s40662-018-0104-3
  • Carpineto P, Mastropasqua R, Marchini G, Toto L, Di Nicola M, Di Antonio L. Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography. Br J Ophthalmol. 2016;100:671–676. doi:10.1136/bjophthalmol-2015-30733026377414
  • Hwang TS, Jia Y, Gao SS, et al. Optical coherence tomography angiography features of diabetic retinopathy. Retina. 2015;35(11):2371–2376. doi:10.1097/IAE.000000000000071626308529
  • Matsunaga D, Yi J, Puliafito CA, Kashani AH. OCT angiography in healthy human subjects. Ophthalmic Surg Lasers Imaging Retina. 2014;45:510–515. doi:10.3928/23258160-20141118-0425423629
  • Stanga PE, Lim JI, Hamilton P. Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update. Ophthalmology. 2003;110(1):15–21. doi:10.1016/S0161-6420(02)01563-412511340
  • Ito YN, Mori K, Young-Duvall J, Yoneya S. Aging changes of the choroidal dye filling pattern in indocyanine green angiography of normal subjects. Retina. 2001;21(3):237–242. doi:10.1097/00006982-200106000-0000711421013
  • Teussink MM, Breukink MB, van Grinsven MJ, et al. OCT angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2015;56:5229–5237. doi:10.1167/iovs.15-1714026244299
  • London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9:44–53. doi:10.1038/nrneurol.2012.22723165340
  • Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat. 2005;206(4):319–348. doi:10.1111/j.1469-7580.2005.00395.x15817102
  • Wang RK, Hurst S. Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by optical micro-angioGraphy at 1.3 mum wavelength. Opt Express. 2007;15:11402–11412. doi:10.1364/OE.15.01140219547498
  • Wang X, Jia Y, Spain R, et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol. 2014;98:1368–1373. doi:10.1136/bjophthalmol-2013-30454724831719
  • Feucht N, Maier M, Lepennetier G, et al. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Mult Scler. 2019;25:224–234. doi:10.1177/135245851775000929303033
  • Lanzillo R, Cennamo G, Criscuolo C, et al. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler. 2018;24:1706–1714. doi:10.1177/135245851772946328933233
  • Spain RI, Liu L, Zhang X, et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol. 2018;102:520–524. doi:10.1136/bjophthalmol-2017-31047728814415
  • Bulut M, Kurtuluş F, Gözkaya O, et al. Evaluation of optical coherence tomography angiographic findings in alzheimer’s type dementia. Br J Ophthalmol. 2018;102:233–237. doi:10.1136/bjophthalmol-2017-31047628600299
  • den Haan J, Janssen SF, van de Kreeke JA, Scheltens P, Verbraak FD, Bouwman FH. Retinal thickness correlates with parietal cortical atrophy in early-onset alzheimer’s disease and controls. Alzheimers Dement. 2017;10:49–55. doi:10.1016/j.dadm.2017.10.005
  • Jiang H, Wei Y, Shi Y, et al. Altered macular microvasculature in mild cognitive impairment and alzheimer disease. J Neuroophthalmol. 2018;38:292–298. doi:10.1097/WNO.000000000000058029040211
  • Balducci N, Morara M, Veronese C, et al. Optical coherence tomography angiography in acute arteritic and non-arteritic anterior ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2017;255:2255–2261. doi:10.1007/s00417-017-3774-y28861697
  • Fard MA, Suwan Y, Moghimi S, et al. Pattern of peripapillary capillary density loss in ischemic optic neuropathy compared to that in primary open-angle glaucoma. PLoS One. 2018;13:e0189237. doi:10.1371/journal.pone.018923729320503
  • Ghasemi Falavarjani K, Tian JJ, Akil H, Garcia GA, Sadda SR, Sadun AA. Swept-source optical coherence tomography angiography of the optic disk in optic neuropathy. Retina. 2016;36(Suppl 1):S168–S177. doi:10.1097/IAE.000000000000125928005675
  • Ling JW, Yin X, Lu QY, Chen YY, Lu PR. Optical coherence tomography angiography of optic disc perfusion in non-arteritic anterior ischemic optic neuropathy. Int J Ophthalmol. 2017;10:1402–1406. doi:10.18240/ijo.2017.09.1228944200
  • Song Y, Min JY, Mao L, Gong YY. Microvasculature dropout detected by the optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. Lasers Surg Med. 2018;50:194–201. doi:10.1002/lsm.2271228986994
  • Zhang Q, Lee CS, Chao J, et al. Wide-field optical coherence tomography based microangiography for retinal imaging. Sci Rep. 2016;6:22017. doi:10.1038/srep2201726912261
  • Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A. 2015;112(18):E2395–E2402. doi:10.1073/pnas.150018511225897021
  • Moussa M, Leila M, Khalid H, Lolah M. Detection of silent type I choroidal neovascular membrane in chronic central serous chorioretinopathy using en face swept-source optical coherence tomography angiography. J Ophthalmol. 2017;2017:6913980. doi:10.1155/2017/691398029348931
  • Zhang Q, Wang RK, Chen C-L, et al. Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2. Retina. 2015;35(11):2285–2299. doi:10.1097/IAE.000000000000084026457402
  • Miller AR, Roisman L, Zhang Q, et al. Comparison between spectral-domain and swept-source optical coherence tomography angiographic imaging of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2017;58:1499–1505. doi:10.1167/iovs.16-2096928273316
  • Zhang Q, Huang Y, Zhang T, et al. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking. J Biomed Opt. 2015;20:066008. doi:10.1117/1.JBO.20.6.06600826102573
  • Huang Y, Zhang Q, Thorell MR, et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina. 2014;45:382–389. doi:10.3928/23258160-20140909-0825230403
  • Munk MR, Giannakaki-Zimmermann H, Berger L, et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices. PLoS One. 2017;12(5):e0177059. doi:10.1371/journal.pone.017705928489918
  • Chen CL, Wang RK. Optical coherence tomography based angiography [Invited]. Biomed Opt Express. 2017;24(8):1056–1082. doi:10.1364/BOE.8.001056
  • de Carlo TE, Bonini Filho MA, Baumal CR, et al. Evaluation of preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina. 2016;47(2):115–119. doi:10.3928/23258160-20160126-0326878443
  • Dansingani KK, Freund KB. Optical coherence tomography angiography reveals mature, tangled vascular networks in eyes with neovascular age-related macular degeneration showing resistance to geographic atrophy. Ophthalmic Surg Lasers Imaging Retina. 2015;46:907–912. doi:10.3928/23258160-20151008-0226469229
  • Chen Z, Huang D, Izatt JA, et al. Volume-rendering optical coherence tomography angiography of macular telangiectasia type 2 (ophthalmology 2015;122:2261-9). Ophthalmology. 2016;123(3):e24. doi:10.1016/j.ophtha.2015.10.013
  • Yu J, Jiang C, Wang X, et al. Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci. 2015;56:3212–3217. doi:10.1167/iovs.14-1627026024105
  • Choi W, Mohler KJ, Potsaid B, et al. Choriocapillaris and choroidal microvasculature imaging with ultrahigh speed OCT angiography. PLoS One. 2013;8(12):e81499. doi:10.1371/journal.pone.008149924349078
  • Ikuta F, Zimmerman HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology. 1976;26(6 PT 2):26–28. doi:10.1212/WNL.26.6_Part_2.26944889
  • Toussaint D, Périer O, Verstappen A, Bervoets S. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol. 1983;3:211–220.6226722
  • Saidha S, Al-Louzi O, Ratchford JN, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann Neurol. 2015;78:801–813. doi:10.1002/ana.2448726190464
  • Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002;12:154–169. doi:10.1111/j.1750-3639.2002.tb00430.x11958369
  • Doche E, Lecocq A, Maarouf A, et al. Hypoperfusion of the thalamus is associated with disability in relapsing remitting multiple sclerosis. J Neuroradiol. 2017;44:158–164. doi:10.1016/j.neurad.2016.10.00127865557
  • Narayana PA, Zhou Y, Hasan KM, Datta S, Sun X, Wolinsky JS. Hypoperfusion and T1-hypointense lesions in white matter in multiple sclerosis. Mult Scler. 2014;20:365–373. doi:10.1177/135245851349593623836878
  • Vos SJ, Verhey F, Frölich L, et al. Prevalence and prognosis of alzheimer’s disease at the mild cognitive impairment stage. Brain. 2015;138(Pt 5):1327–1338. doi:10.1093/brain/awv02925693589
  • Yamashita KI, Taniwaki Y, Utsunomiya H, Taniwaki T. Cerebral blood flow reduction associated with orientation for time in amnesic mild cognitive impairment and Alzheimer's disease patients. J Neuroimaging. 2014;24:590–594. doi:10.1111/jon.1209624593247
  • Snyder PJ, Johnson LN, Lim YY, et al. Nonvascular retinal imaging markers of preclinical Alzheimer’s disease. Alzheimers Dement. 2016;4:169–178.
  • Garcia-Martin E, Bambo MP, Marques M, et al. Ganglion cell layer measurements correlate with disease severity in patients with alzheimer’s disease. Acta Ophthalmol. 2016;94(6):e454–e459. doi:10.1111/aos.1297726895692
  • Akbari M, Abdi P, Fard MA, et al. Retinal ganglion cell loss precedes retinal nerve fiber thinning in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol. 2016;36:141–146. doi:10.1097/WNO.000000000000034526835663
  • Takayama K, Ito Y, Kaneko H, Kataoka K, Ra E, Terasaki H. Optical coherence tomography angiography in Leber hereditary optic neuropathy. Acta Ophthalmol. 2017;95:e344–e345. doi:10.1111/aos.1324427778481
  • Goldhagen BE, Bhatti MT, Srinivasan PP, Chiu SJ, Farsiu S, El-Dairi MA. Retinal atrophy in eyes with resolved papilledema detected by optical coherence tomography. J Neuroophthalmol. 2015;35:122–126. doi:10.1097/WNO.000000000000021025742060
  • Carta A, Mora P, Aldigeri R, et al. Optical coherence tomography is a useful tool in the differentiation between true edema and pseudoedema of the optic disc. PLoS One. 2018;13:e0208145. doi:10.1371/journal.pone.020814530496251
  • Mikelberg FS, Drance SM, Schulzer M, Yidegiligne HM, Weis MM. The normal human optic nerve: axon count and axon diameter distribution. Ophthalmology. 1989;96(9):1325–1328. doi:10.1016/S0161-6420(89)32718-72780002
  • Pan BX, Ross-Cisneros FN, Carelli V, et al. Mathematically modeling the involvement of axons in Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2012;53(12):7608–7617. doi:10.1167/iovs.12-1045223060142
  • Fard M, Sahraiyan A, Jalil J, et al. Optical coherence tomography angiography in papilledema compared with pseudopapilledema. Invest Ophthalmol Vis Sci. 2019;60(1):168–175. doi:10.1167/iovs.18-2545330640969
  • Abcouwer SF, Gardner TW. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci. 2014;1311::174–190. doi:10.1111/nyas.1241224673341
  • Simó R, Hernández C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25(1):23–33. doi:10.1016/j.tem.2013.09.00524183659
  • Simó R, Hernández C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog Retin Eye Res. 2015;48:160–180. doi:10.1016/j.preteyeres.2015.04.00325936649
  • Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–186. doi:10.1016/j.preteyeres.2015.08.00126297071
  • Simó R, Stitt AW, Gardner WT. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia. 2018;61:1902–1912. doi:10.1007/s00125-018-4692-130030554
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–185. doi:10.1124/pr.57.2.415914466
  • Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366(13):1227–1239. doi:10.1056/NEJMra100507322455417
  • Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255(1):1–6. doi:10.1007/s00417-016-3548-y27832340
  • Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab. 2013;33(11):1685–1695. doi:10.1038/jcbfm.2013.14523963372
  • Metea MR, Newmman EA. Signalling within the neurovascular unit in the retina. Exp Physiol. 2007;92:635–640. doi:10.1113/expphysiol.2006.03637617434916
  • Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55. doi:10.1016/j.preteyeres.2017.11.00329229445
  • Hasegawa N, Nozaki M, Takase N, Yoshida OY. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema. Invest Ophthalmol Vis Sci. 2016;57:OCT348–OCT355. doi:10.1167/iovs.15-1878227409492
  • Simó R, Ciudin A, Simó-Servat O, Hernández C. Cognitive impairment and dementia: a new emerging complication of type 2 diabetes—the diabetologist’s perspective. Acta Diabetol. 2017;54(5):417–424. doi:10.1007/s00592-017-0970-528210868
  • Sundstrom JM, Hernández C, Weber S, et al. Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases. Invest Ophthamol Vis Sci. 2018;59(6):2264–2274. doi:10.1167/iovs.17-23678
  • Kirbas S, Turkyilmaz K, Tufekci A, Durmus M. Retinal nerve fiber layer thickness in Parkinson’s disease. J Neuroophthalmol. 2013;33(1):62–65. doi:10.1097/WNO.0b013e318270174523100041
  • Altintas Ö, Iseri P, Ozkan B, Caglar Y. Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol. 2008;116(2):137–146. doi:10.1007/s10633-007-9091-817962989
  • Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A. Retinal nerve fiber layer thinning in Parkinson’s disease. Vision Res. 2004;44(24):2793–2797. doi:10.1016/j.visres.2004.06.00915342223
  • La Morgia C, Barboni P, Rizzo G, et al. Loss of temporal retinal nerve fibers in Parkinson’s disease: a mitochondrial pattern? Eur J Neurol. 2013;20(1):198–201. doi:10.1111/j.1468-1331.2012.03701.x22436028
  • Garcia-Martin E, Larrosa JM, Polo V, et al. Distribution of retinal layer atrophy in patients with Parkinson’s disease and association with disease severity and duration. Am J Ophthalmol. 2014;157(2):470–478. doi:10.1016/j.ajo.2013.09.02824315296
  • Jimenez B, Ascaso FJ, Cristobal JA, Lopez Del Val J. Development of a prediction formula of Parkinson’s disease severity by optical coherence tomography. Mov Disord. 2014;29(1):68–74. doi:10.1002/mds.2574724458320
  • Aaker GD, Myung JS, Ehrlich JR, Mohammed M, Henchcliffe C, Kiss S. Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin Ophthalmol. 2010;6(4):1427–1432.
  • Archibald NK, Clarke MP, Mosimann UP, Burn DJ. Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(6):431–436. doi:10.1016/j.parkreldis.2011.03.00421454118
  • Yu J-G, Feng Y-F, Xiang Y, et al. Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One. 2014;9(1):e85718. doi:10.1371/journal.pone.008571824465663
  • Garcia-Martin E, Rodriguez-Mena D, Satue M, et al. Electrophysiology and optical coherence tomography to evaluate Parkinson’s disease severity. Invest Ophthalmol Vis Sci. 2014;55(2):696–705. doi:10.1167/iovs.13-1306224425856
  • Shrier EM, Adam CR, Spund B, Glazman S, Bodis-Wollner I. Interocular asymmetry of foveal thickness in Parkinson’s disease. J Ophthalmol. 2012;2012:728457. doi:10.1155/2012/72845722900149
  • Cubo E, Tedejo RP, Rodriguez Mendez V, Lopez Pena MJ, Trejo Gabriel YGJM. Retina thickness in Parkinson’s disease and essential tremor. Mov Disord. 2010;25:2461–2462. doi:10.1002/mds.2321520669291
  • Spund B, Ding Y, Liu T, et al. Remodeling of the fovea in Parkinson’s disease. J Neural Transm. 2013;120(5):745–753. doi:10.1007/s00702-012-0909-523263598
  • Albrecht P, Muller A-K, Sudmeyer M, et al. Optical coherence tomography in parkinsonian syndromes. PLoS One. 2012;7(4):e34891. doi:10.1371/journal.pone.003489122514688
  • Schneider M, Muller H-P, Lauda F, et al. Retinal single-layer analysis in parkinsonian syndromes: an optical coherence tomography study. J Neural Transm. 2014;121(1):41–47. doi:10.1007/s00702-013-1072-323907408
  • Satue M, Obis J, Alarcia R, et al. Retinal and choroidal changes in patients with Parkinson’s disease detected by swept-source optical coherence tomography. Curr Eye Res. 2018;43(1):109–115. doi:10.1080/02713683.2017.137011629111842
  • Kwapong WR, Ye H, Peng C, et al. Retinal microvascular impairment in the early stages of Parkinson’s disease. Invest Ophthalmol Vis Sci. 2018;;59(10):4115–4122. doi:10.1167/iovs.17-2323030098201
  • Litvan I, Mangone CA, McKee A, et al. Natural history of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) and clinical predictors of survival: a clinicopathological study. J Neurol Neurosurg Psychiatry. 1996;60:615–620. doi:10.1136/jnnp.60.6.6158648326
  • Mendoza-Santiesteban C, Gabilondo I, Palma JA, Norcliffe-Kaufmann L, Kaufmann H. The retina in multiple system atrophy: systematic review and meta-analysis. Front Neurol. 2017;24(8):206. doi:10.3389/fneur.2017.00206
  • Ahn J, Lee JY, Kim TW. Retinal thinning correlates with clinical severity in multiple system atrophy. J Neurol. 2016;263:2039–2047. doi:10.1007/s00415-016-8230-027416856
  • Mendoza-Santiesteban CE, Palma JA, Martinez J, Norcliffe-Kaufmann L, Hedges RT 3rd, Kaufmann H. Progressive retinal structure abnormalities in multiple system atrophy. Mov Disord. 2015;30:1944–1953. doi:10.1002/mds.2636026359930
  • Jellinger KA, Seppi K, Wenning GK. Grading of neuropathology in multiple system atrophy: proposal for a novel scale. Mov Disord. 2005;20(Suppl 12):S29–S36. doi:10.1002/mds.2053716092088
  • Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and Dementia. Nature. 1996;383(6602):707–710. doi:10.1038/383707a08878478
  • Tikka S, Mykkanen K, Ruchoux MM, et al. Congruence between NOTCH3 mutations and GOM in 131 CADASIL Patients. Brain. 2009;132(Pt 4):933–939. doi:10.1093/brain/awn36419174371
  • Nelis P, Kleffner I, Burg M, et al. OCT-angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients. Sci Rep. 2018;25(8):8148. doi:10.1038/s41598-018-26475-5
  • Alten F, Motte J, Ewering C, et al. Multimodal retinal vessel analysis in CADASIL patients. PLoS One. 2014;5(9):e112311. doi:10.1371/journal.pone.0112311
  • Haritoglou C, Hoops J, Stefani F, Mehraein P, Kampik A, Dichgans M. Histopathological abnormalities in ocular blood vessels of CADASIL patients. Am J Ophthalmol. 2004;138(2):302–305. doi:10.1016/j.ajo.2004.02.07315289148
  • Fang JX, Yu M, Wu Y, et al. Study of enhanced depth imaging optical coherence tomography in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Chin Med J (Engl). 2017;130:1042–1048. doi:10.4103/0366-6999.20493528469098
  • Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis. 2009;4(1):3. doi:10.1186/1750-1172-4-319192301
  • Simonett JCJ, Siddique N, Armstrong JL, Fawzi AA, Siddique T, Volpe NJ. Ocular Manifestations and Optic Nerve Changes in Patients with Amyotrophic Lateral Sclerosis (ALS). ARVO; 2013.
  • Mukherjee N, McBurney-Lin S, Kuo A, Bedlack R, Tseng H, Bhattacharya S. Retinal thinning in amyotrophic lateral sclerosis patients without ophthalmic disease. PLoS One. 2017;12(9):e0185242. doi:10.1371/journal.pone.018524228945811
  • Rohani M, Meysamie A, Zamani B, Sowlat MM, Akhoundi FH. Reduced retinal nerve fiber layer (RNFL) thickness in ALS patients: a window to disease progression. J Neurol. 2018;265(7):1557–1562. doi:10.1007/s00415-018-8863-229713825
  • Simonett JM, Huang R, Siddique N, et al. Macular sub-layer thinning and association with pulmonary function tests in amyotrophic lateral sclerosis. Sci. Rep. 2016;6(1):29187. doi:10.1038/srep2918727383525
  • Hübers A, Müller HP, Dreyhaupt J, et al. Retinal involvement in amyotrophic lateral sclerosis: a study with optical coherence tomography and diffusion tensor imaging. J. Neural Transm. 2016;123(3):281–287. doi:10.1007/s00702-015-1483-426582428
  • Volpe NJ, Simonett J, Fawzi AA, Siddique T. Opthalmic manifestations of amyotrophic lateral sclerosis (an American ophthalmological society thesis). Trans Am Ophthalmol Soc. 2015;113:1–15.
  • Mukherjee NKA, Bedlack R, Tseng H. Imaging Amyotrophic Lateral Sclerosis (ALS) Neurodegeneration Through the Eye. Orlando, Florida: ARVO; 2014.
  • Roth NM, Saidha S, Zimmermann H, et al. Optical coherence tomography does not support optic nerve involvement in amyotrophic lateral sclerosis. Eur J Neurol. 2013;20(8):1170–1176. doi:10.1111/ene.1214623582075
  • Rojas P, de Hoz R, Ramirez IA, et al. Changes in retinal OCT and their correlations with neurological disability in early ALS patients, a follow-up study. Brain Sci. 2019;9(12):337. doi:10.3390/brainsci9120337
  • Cerveró A, Casado A, Riancho J. Retinal changes in amyotrophic lateral sclerosis: looking at the disease through a new window. J Neurol. 2019;2. doi:10.1007/s00415-019-09654-w
  • McColgan P, Tabrizi SJ. Huntington’s disease: a clinical review. Eur J Neurol. 2018;25(1):24–34. doi:10.1111/ene.1341328817209
  • Kersten HM, Danesh-Meyer HV, Kilfoyle DH, Roxburgh RH. Optical coherence tomography findings in huntington’s disease: a potential biomarker of disease progression. J Neurol. 2015;262:2457–2465. doi:10.1007/s00415-015-7869-226233693
  • Andrade C, Beato J, Monteiro A, et al. Spectral-domain optical coherence tomography as a potential biomarker in huntington’s disease. Mov Disord. 2016;31:377–383. doi:10.1002/mds.2648626853218
  • Gatto E, Parisi V, Persi G, et al. Optical Coherence Tomography (OCT) study in argentinean huntington’s disease patients. Int J Neurosci. 2018;128(12):1157–1162. doi:10.1080/00207454.2018.148980729912591
  • Wylęgała A. Principles of OCTA and applications in clinical neurology. Curr Neurol Neurosci Rep. 2018;18:96. doi:10.1007/s11910-018-0911-x30338429
  • Asanad S, Wu J, Nassisi M, Ross-Cisneros NF, Sadun AA. Optical coherence tomography-angiography in Wolfram syndrome: a mitochondrial etiology in disease pathophysiology. Can J Ophthalmol. 2019;54:e27–e30. doi:10.1016/j.jcjo.2018.04.00230851792
  • Parrozzani R, Leonardi F, Frizziero L, et al. Retinal vascular and neural remodeling secondary to optic nerve axonal degeneration. Ophthalmol Retin. 2018;2(8):827–835. doi:10.1016/j.oret.2017.12.001
  • Chang MY, Phasukkijwatana N, Garrity S, et al. Foveal and peripapillary vascular decrement in migraine with aura demonstrated by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(12):5477–5484. doi:10.1167/iovs.17-2247729059314
  • Ulusoy M, Horasanli B, Kal A. Retinal vascular density evaluation of migraine patients with and without aura and association with white matter hyperintensities. Acta Neurol Belg. 2019;119(3):411–417. doi:10.1007/s13760-019-01094-730762208
  • Tasli GN, Ersoy A. Altered macular vasculature in migraine patients without aura: is it associated with ocular vasculature and white matter hyperintensities? J Ophthalmol. 2020;13(2020):3412490.
  • Grewal DS, Fine HF, Fekrat S. Is OCT angiography useful in neurodegenerative diseases? Ophthalmic Surg Lasers Imaging Retina. 2019;50(5):269–273. doi:10.3928/23258160-20190503-0231100156