880
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Ocular Myasthenia Gravis: A Current Overview

ORCID Icon
Pages 1-13 | Received 31 Oct 2022, Accepted 24 Jan 2023, Published online: 05 Feb 2023

References

  • Hendricks TM, Bhatti MT, Hodge DO, Chen JJ. Incidence, epidemiology, and transformation of ocular myasthenia gravis: a population-based study. Am J Ophthalmol. 2019;205:99–105. doi:10.1016/j.ajo.2019.04.017
  • Robertson NP, Deans J, Compston DA. Myasthenia gravis: a population based epidemiological study in Cambridgeshire, England. J Neurol Neurosurg Psychiatry. 1998;65(4):492–496. doi:10.1136/jnnp.65.4.492
  • Bever CT Jr, Aquino AV, Penn AS, Lovelace RE, Rowland LP. Prognosis of ocular myasthenia. Ann Neurol. 1983;14(5):516–519. doi:10.1002/ana.410140504
  • Beekman R, Kuks JB, Oosterhuis HJ. Myasthenia gravis: diagnosis and follow-up of 100 consecutive patients. J Neurol. 1997;244(2):112–118. doi:10.1007/s004150050059
  • Grob D, Brunner N, Namba T, Pagala M. Lifetime course of myasthenia gravis. Muscle Nerve. 2008;37(2):141–149. doi:10.1002/mus.20950
  • Zong Y, Jin R. Structural mechanisms of the agrin-LRP4-MuSK signaling pathway in neuromuscular junction differentiation. Cell Mol Life Sci. 2013;70(17):3077–3088. doi:10.1007/s00018-012-1209-9
  • Berrih-Aknin S, Le Panse R. Myasthenia gravis and autoantibodies: pathophysiology of the different subtypes [Myasthenie et auto-anticorps: physiopathologie des differentes entites]. Rev Med Interne. 2014;35(7):413–420. French. doi:10.1016/j.revmed.2013.09.012
  • Ciafaloni E. Myasthenia gravis and congenital myasthenic syndromes. Continuum. 2019;25(6):1767–1784. doi:10.1212/CON.0000000000000800
  • Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol. 1990;145(7):2115–2122.
  • Hara H, Hayashi K, Ohta K, Itoh N, Nishitani H, Ohta M. Detection and characterization of blocking-type anti-acetylcholine receptor antibodies in sera from patients with myasthenia gravis. Clin Chem. 1993;39(10):2053–2057. doi:10.1093/clinchem/39.10.2053
  • Sahashi K, Engel AG, Linstrom JM, Lambert EH, Lennon VA. Ultrastructural localization of immune complexes (IgG and C3) at the end-plate in experimental autoimmune myasthenia gravis. J Neuropathol Exp Neurol. 1978;37(2):212–223. doi:10.1097/00005072-197803000-00008
  • Niks EH, van Leeuwen Y, Leite MI, et al. Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. J Neuroimmunol. 2008;195(1–2):151–156. doi:10.1016/j.jneuroim.2008.01.013
  • Koneczny I, Cossins J, Waters P, Beeson D, Vincent A. MuSK myasthenia gravis IgG4 disrupts the interaction of LRP4 with MuSK but both IgG4 and IgG1-3 can disperse preformed agrin-independent AChR clusters. PLoS One. 2013;8(11):e80695. doi:10.1371/journal.pone.0080695
  • Koneczny I, Stevens JA, De Rosa A, et al. IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J Autoimmun. 2017;77:104–115. doi:10.1016/j.jaut.2016.11.005
  • Vergoossen DLE, Plomp JJ, Gstottner C, et al. Functional monovalency amplifies the pathogenicity of anti-MuSK IgG4 in myasthenia gravis. Proc Natl Acad Sci U S A. 2021;118(13). doi:10.1073/pnas.2020635118
  • Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69(2):418–422. doi:10.1002/ana.22312
  • Romi F, Suzuki S, Suzuki N, Petzold A, Plant GT, Gilhus NE. Anti-voltage-gated potassium channel Kv1.4 antibodies in myasthenia gravis. J Neurol. 2012;259(7):1312–1316. doi:10.1007/s00415-011-6344-y
  • Berrih-Aknin S. Cortactin: a new target in autoimmune myositis and myasthenia gravis. Autoimmun Rev. 2014;13(10):1001–1002. doi:10.1016/j.autrev.2014.08.037
  • Zoltowska Katarzyna M, Belaya K, Leite M, Patrick W, Vincent A, Beeson D. Collagen Q--a potential target for autoantibodies in myasthenia gravis. J Neurol Sci. 2015;348(1–2):241–244. doi:10.1016/j.jns.2014.12.015
  • Lisak RP. Antibodies to LRP4 and agrin are pathogenic in myasthenia gravis: at the junction where it happens. Neurology. 2021;97(10):463–464. doi:10.1212/WNL.0000000000012471
  • Soltys J, Gong B, Kaminski HJ, Zhou Y, Kusner LL. Extraocular muscle susceptibility to myasthenia gravis: unique immunological environment? Ann N Y Acad Sci. 2008;1132:220–224. doi:10.1196/annals.1405.037
  • Singman EL, Matta NS, Silbert DI. Use of the Cogan lid twitch to identify myasthenia gravis. J Neuroophthalmol. 2011;31(3):239–240. doi:10.1097/WNO.0b013e3182224b92
  • Gerling J, Meyer JH, Kommerell G. Visual field defects in optic neuritis and anterior ischemic optic neuropathy: distinctive features. Graefes Arch Clin Exp Ophthalmol. 1998;236(3):188–192. doi:10.1007/s004170050062
  • Osher RH, Griggs RC. Orbicularis fatigue: the ‘peek’ sign of myasthenia gravis. Arch Ophthalmol. 1979;97(4):677–679. doi:10.1001/archopht.1979.01020010333009
  • Colavito J, Cooper J, Ciuffreda KJ. Non-ptotic ocular myasthenia gravis: a common presentation of an uncommon disease. Optometry. 2005;76(7):363–375. doi:10.1016/j.optm.2005.05.004
  • Pike-Lee T, Hill J, Li J, Kosmorsky GS, Li Y. Comitant ocular deviation in myasthenia gravis. J Neuroophthalmol. 2021;41(4):e619–e621. doi:10.1097/WNO.0000000000001056
  • Bandini F, Faga D, Simonetti S. Ocular myasthenia mimicking a one-and-a-half syndrome. J Neuroophthalmol. 2001;21(3):210–211. doi:10.1097/00041327-200109000-00010
  • McClard CK, Lyons LJ, Yalamanchili S. Bilateral pseudo-internuclear ophthalmoplegia in a patient with myasthenia gravis. Am J Ophthalmol Case Rep. 2018;12:76–78. doi:10.1016/j.ajoc.2018.09.008
  • Kubis KC, Danesh-Meyer HV, Savino PJ, Sergott RC. The ice test versus the rest test in myasthenia gravis. Ophthalmology. 2000;107(11):1995–1998. doi:10.1016/S0161-6420(00)00458-9
  • Odel JG, Winterkorn JM, Behrens MM. The sleep test for myasthenia gravis. A safe alternative to tensilon. J Clin Neuroophthalmol. 1991;11(4):288–292.
  • Diamond S, Schear HE, Leeds MF. Pseudo-internuclear oculomotor ophthalmoplegia secondary to Guillain-Barre polyneuronitis simulating myasthenia gravis in a air transport pilot. Aviat Space Environ Med. 1975;46(2):204–207.
  • Dirr LY, Donofrio PD, Patton JF, Troost BT. A false-positive edrophonium test in a patient with a brainstem glioma. Neurology. 1989;39(6):865. doi:10.1212/wnl.39.6.865
  • Vincent A, Newsom Davis J. Anti-acetylcholine receptor antibodies. J Neurol Neurosurg Psychiatry. 1980;43(7):590–600. doi:10.1136/jnnp.43.7.590
  • Peeler CE, Lott LB, Nagia L, Lemos J, Eggenberger ER, Cornblath WT. Clinical utility of acetylcholine receptor antibody testing in ocular myasthenia gravis. JAMA Neurol. 2015;72:1170–1174. doi:10.1001/jamaneurol.2015.1444
  • Chung IY, Sheth SJ, Wells KK, Campbell TG. The usefulness of anti-acetylcholine receptor binding antibody testing in diagnosing ocular myasthenia gravis. J Neuroophthalmol. 2020. doi:10.1097/WNO.0000000000001061
  • Rodriguez Cruz PM, Al-Hajjar M, Huda S, et al. Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis. JAMA Neurol. 2015;72(6):642–649. doi:10.1001/jamaneurol.2015.0203
  • Monte G, Spagni G, Damato V, Iorio R, Marino M, Evoli A. Acetylcholine receptor antibody positivity rate in ocular myasthenia gravis: a matter of age? J Neurol. 2021;268(5):1803–1807. doi:10.1007/s00415-020-10342-3
  • Ding J, Zhao S, Ren K, et al. Prediction of generalization of ocular myasthenia gravis under immunosuppressive therapy in Northwest China. BMC Neurol. 2020;20(1):238. doi:10.1186/s12883-020-01805-1
  • Behbehani R, Ali A, Al-Moosa A. Ocular myasthenia: clinical course and the diagnostic utility of assaying acetylcholine receptor antibodies. Neuroophthalmology. 2022;46(4):220–226. doi:10.1080/01658107.2022.2037662
  • Soliven BC, Lange DJ, Penn AS, et al. Seronegative myasthenia gravis. Neurology. 1988;38(4):514–517. doi:10.1212/wnl.38.4.514
  • Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med. 2001;7(3):365–368. doi:10.1038/85520
  • Bau V, Hanisch F, Hain B, Zierz S. Ocular involvement in MuSK antibody-positive myasthenia gravis [Okulare Beteiligung bei MuSK-Antikorper-positiver Myasthenia gravis]. Klin Monbl Augenheilkd. 2006;223(1):81–83. German. doi:10.1055/s-2005-858629
  • McConville J, Farrugia ME, Beeson D, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol. 2004;55(4):580–584. doi:10.1002/ana.20061
  • Bacchi S, Kramer P, Chalk C. Autoantibodies to low-density lipoprotein receptor-related protein 4 in double seronegative myasthenia gravis: a systematic review. Can J Neurol Sci. 2018;45(1):62–67. doi:10.1017/cjn.2017.253
  • Zouvelou V, Zisimopoulou P, Rentzos M, et al. Double seronegative myasthenia gravis with anti-LRP 4 antibodies. Neuromuscul Disord. 2013;23(7):568–570. doi:10.1016/j.nmd.2013.03.013
  • Tsivgoulis G, Dervenoulas G, Kokotis P, et al. Double seronegative myasthenia gravis with low density lipoprotein-4 (LRP4) antibodies presenting with isolated ocular symptoms. J Neurol Sci. 2014;346(1–2):328–330. doi:10.1016/j.jns.2014.09.013
  • Madhavan R, Gong ZL, Ma JJ, Chan AW, Peng HB. The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction. PLoS One. 2009;4(12):e8478. doi:10.1371/journal.pone.0008478
  • Pinal-Fernandez I, Pak K, Gil-Vila A, et al. Anti-cortactin autoantibodies are associated with key clinical features in adult myositis but are rarely present in juvenile myositis. Arthritis Rheumatol. 2022;74(2):358–364. doi:10.1002/art.41931
  • Cortes-Vicente E, Gallardo E, Martinez MA, et al. Clinical characteristics of patients with double-seronegative myasthenia gravis and antibodies to cortactin. JAMA Neurol. 2016;73(9):1099–1104. doi:10.1001/jamaneurol.2016.2032
  • Stathopoulos P, Kumar A, Nowak RJ, O’Connor KC. Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight. 2017;2(17). doi:10.1172/jci.insight.94263
  • Tandan R, Hehir MK 2nd, Waheed W, Howard DB. Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve. 2017;56(2):185–196. doi:10.1002/mus.25597
  • Costa J, Evangelista T, Conceicao I, de Carvalho M. Repetitive nerve stimulation in myasthenia gravis--relative sensitivity of different muscles. Clin Neurophysiol. 2004;115(12):2776–2782. doi:10.1016/j.clinph.2004.05.024
  • Giannoccaro MP, Di Stasi V, Zanesini C, Donadio V, Avoni P, Liguori R. Sensitivity and specificity of single-fibre EMG in the diagnosis of ocular myasthenia varies accordingly to clinical presentation. J Neurol. 2020;267(3):739–745. doi:10.1007/s00415-019-09631-3
  • Witoonpanich R, Dejthevaporn C, Sriphrapradang A, Pulkes T. Electrophysiological and immunological study in myasthenia gravis: diagnostic sensitivity and correlation. Clin Neurophysiol. 2011;122(9):1873–1877. doi:10.1016/j.clinph.2011.02.026
  • Baruca M, Leonardis L, Podnar S, et al. Single fiber EMG as a prognostic tool in myasthenia gravis. Muscle Nerve. 2016;54(6):1034–1040. doi:10.1002/mus.25174
  • Oh SJ, Ohira M. Single-fiber EMG and clinical correlation in Lambert-Eaton myasthenic syndrome. Muscle Nerve. 2013;47(5):664–667. doi:10.1002/mus.23638
  • Giannoccaro MP, Paolucci M, Zenesini C, et al. Comparison of ice pack test and single-fiber EMG diagnostic accuracy in patients referred for myasthenic ptosis. Neurology. 2020;95(13):e1800–e1806. doi:10.1212/WNL.0000000000010619
  • Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer. 2019;18(1):155. doi:10.1186/s12943-019-1091-2
  • Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–1086. doi:10.1158/2159-8290.CD-18-0367
  • Safa H, Johnson DH, Trinh VA, et al. Immune checkpoint inhibitor related myasthenia gravis: single center experience and systematic review of the literature. J Immunother Cancer. 2019;7(1):319. doi:10.1186/s40425-019-0774-y
  • Johansen A, Christensen SJ, Scheie D, Hojgaard JLS, Kondziella D. Neuromuscular adverse events associated with anti-PD-1 monoclonal antibodies: systematic review. Neurology. 2019;92(14):663–674. doi:10.1212/WNL.0000000000007235
  • Becquart O, Lacotte J, Malissart P, et al. Myasthenia gravis induced by immune checkpoint inhibitors. J Immunother. 2019;42(8):309–312. doi:10.1097/CJI.0000000000000278
  • Al-Hashel J, Rashad HM, Rousseff RT. An adult patient with ocular myasthenia and unusually long spontaneous remission. Case Rep Neurol Med. 2014;2014:372769. doi:10.1155/2014/372769
  • So H, Ikeguchi R, Kobayashi M, Suzuki M, Shimizu Y, Kitagawa K. PD-1 inhibitor-associated severe myasthenia gravis with necrotizing myopathy and myocarditis. J Neurol Sci. 2019;399:97–100. doi:10.1016/j.jns.2019.02.023
  • Rubio-Infante N, Ramirez-Flores YA, Castillo EC, Lozano O, Garcia-Rivas G, Torre-Amione G. Cardiotoxicity associated with immune checkpoint inhibitor therapy: a meta-analysis. Eur J Heart Fail. 2021;23(10):1739–1747. doi:10.1002/ejhf.2289
  • Rubio-Infante N, Ramirez-Flores YA, Castillo EC, et al. Review of the mechanisms involved in immune checkpoint inhibitors cardiotoxicity and challenges to improve clinical safety. Front Cell Dev Biol. 2022;10:851032. doi:10.3389/fcell.2022.851032
  • Shi J, Tan Y, Huang Y, et al. Association between clinical factors and result of immune checkpoint inhibitor related myasthenia gravis: a single center experience and systematic review. Front Neurol. 2022;13:858628. doi:10.3389/fneur.2022.858628
  • Sriwastava S, Tandon M, Kataria S, Daimee M, Sultan S. New onset of ocular myasthenia gravis in a patient with COVID-19: a novel case report and literature review. J Neurol. 2020. doi:10.1007/s00415-020-10263-1
  • Restivo DA, Centonze D, Alesina A, Marchese-Ragona R. Myasthenia gravis associated with SARS-CoV-2 infection. Ann Intern Med. 2020;173(12):1027–1028. doi:10.7326/L20-0845
  • Muhammed L, Baheerathan A, Cao M, Leite MI, Viegas S. MuSK antibody-associated myasthenia gravis with SARS-CoV-2 infection: a case report. Ann Intern Med. 2021;174(6):872–873. doi:10.7326/L20-1298
  • Murthy JMK, Gutta AK, Yerasu MR, et al. COVID-19 in patients with myasthenia gravis: mechanisms of respiratory failure. Neurol India. 2021;69(6):1772–1776. doi:10.4103/0028-3886.333460
  • Fanella G, Baiata C, Candeloro E, et al. New-onset myasthenia gravis after mRNA SARS-CoV-2 vaccination: a case series. Neurol Sci. 2022;43(10):5799–5802. doi:10.1007/s10072-022-06284-5
  • Kaulen LD, Doubrovinskaia S, Mooshage C, et al. Neurological autoimmune diseases following vaccinations against SARS-CoV-2: a case series. Eur J Neurol. 2022;29(2):555–563. doi:10.1111/ene.15147
  • Tereshko Y, Gigli GL, Pez S, De Pellegrin A, Valente M. New-onset myasthenia gravis after SARS-CoV-2 infection: case report and literature review. J Neurol. 2022;1–9. doi:10.1007/s00415-022-11472-6
  • Mirmosayyeb O, Moases Ghaffary E, Mazdak M, Bagheri Z, Bagherieh S, Shaygannejad V. Is myasthenia gravis a real complication of the COVID-19 vaccine? A case report-based systematic review. Can J Infect Dis Med Microbiol. 2022;2022:5009450. doi:10.1155/2022/5009450
  • Galassi G, Mazzoli M, Ariatti A, Kaleci S, Valzania F, Nichelli PF. Antibody profile may predict outcome in ocular myasthenia gravis. Acta Neurol Belg. 2018;118(3):435–443. doi:10.1007/s13760-018-0943-7
  • Grob D, Arsura EL, Brunner NG, Namba T. The course of myasthenia gravis and therapies affecting outcome. Ann N Y Acad Sci. 1987;505:472–499. doi:10.1111/j.1749-6632.1987.tb51317.x
  • Nagia L, Lemos J, Abusamra K, Cornblath WT, Eggenberger ER. Prognosis of ocular myasthenia gravis: retrospective multicenter analysis. Ophthalmology. 2015;122(7):1517–1521. doi:10.1016/j.ophtha.2015.03.010
  • Li F, Hotter B, Swierzy M, Ismail M, Meisel A, Ruckert JC. Generalization after ocular onset in myasthenia gravis: a case series in Germany. J Neurol. 2018;265(12):2773–2782. doi:10.1007/s00415-018-9056-8
  • Kupersmith MJ, Latkany R, Homel P. Development of generalized disease at 2 years in patients with ocular myasthenia gravis. Arch Neurol. 2003;60(2):243–248. doi:10.1001/archneur.60.2.243
  • Wong SH, Petrie A, Plant GT. Ocular myasthenia gravis: toward a risk of generalization score and sample size calculation for a randomized controlled trial of disease modification. J Neuroophthalmol. 2016;36(3):252–258. doi:10.1097/WNO.0000000000000350
  • Ruan Z, Sun C, Lang Y, et al. Development and validation of a nomogram for predicting generalization in patients with ocular myasthenia gravis. Front Immunol. 2022;13:895007. doi:10.3389/fimmu.2022.895007
  • Hong YH, Kwon SB, Kim BJ, et al. Prognosis of ocular myasthenia in Korea: a retrospective multicenter analysis of 202 patients. J Neurol Sci. 2008;273(1–2):10–14. doi:10.1016/j.jns.2008.05.023
  • Teo KY, Tow SL, Haaland B, et al. Low conversion rate of ocular to generalized myasthenia gravis in Singapore. Muscle Nerve. 2018;57(5):756–760. doi:10.1002/mus.25983
  • Yu Z, Zhang M, Jing H, et al. Characterization of LRP4/agrin antibodies from a patient with myasthenia gravis. Neurology. 2021;97(10):e975–e987. doi:10.1212/WNL.0000000000012463
  • Meisel A, Baggi F, Behin A, et al. The role of autoantibody levels as biomarkers in the management of patients with myasthenia gravis: a systematic review and expert appraisal. Eur J Neurol. 2022. doi:10.1111/ene.15565
  • Sabre L, Maddison P, Wong SH, et al. miR-30e-5p as predictor of generalization in ocular myasthenia gravis. Ann Clin Transl Neurol. 2019;6(2):243–251. doi:10.1002/acn3.692
  • Sabre L, Punga T, Punga AR. Circulating miRNAs as potential biomarkers in myasthenia gravis: tools for personalized medicine. Front Immunol. 2020;11:213. doi:10.3389/fimmu.2020.00213
  • Cornblath WT. Treatment of ocular myasthenia gravis. Asia Pac J Ophthalmol. 2018;7(4):257–259. doi:10.22608/APO.2018301
  • Kupersmith MJ, Ying G. Ocular motor dysfunction and ptosis in ocular myasthenia gravis: effects of treatment. Br J Ophthalmol. 2005;89(10):1330–1334. doi:10.1136/bjo.2004.063404
  • Kupersmith MJ. Ocular myasthenia gravis: treatment successes and failures in patients with long-term follow-up. J Neurol. 2009;256(8):1314–1320. doi:10.1007/s00415-009-5120-8
  • Benatar M, McDermott MP, Sanders DB, et al. Efficacy of prednisone for the treatment of ocular myasthenia (EPITOME): a randomized, controlled trial. Muscle Nerve. 2016;53(3):363–369. doi:10.1002/mus.24769
  • Sharshar T, Porcher R, Demeret S, et al. Comparison of corticosteroid tapering regimens in myasthenia gravis: a randomized clinical trial. JAMA Neurol. 2021;78(4):426–433. doi:10.1001/jamaneurol.2020.5407
  • Shah YS, Henderson AD, Carey AR. Effect of initial prednisone dosing on ocular myasthenia gravis control. J Neuroophthalmol. 2021;41(4):e622–e626. doi:10.1097/WNO.0000000000001058
  • Heckmann JM, Nel M. A unique subphenotype of myasthenia gravis. Ann N Y Acad Sci. 2018;1412(1):14–20. doi:10.1111/nyas.13471
  • Chan JW. Mycophenolate mofetil for ocular myasthenia. J Neurol. 2008;255(4):510–513. doi:10.1007/s00415-008-0718-9
  • Di Stefano V, Lupica A, Rispoli MG, Di Muzio A, Brighina F, Rodolico C. Rituximab in AChR subtype of myasthenia gravis: systematic review. J Neurol Neurosurg Psychiatry. 2020;91(4):392–395. doi:10.1136/jnnp-2019-322606
  • Menon D, Barnett C, Bril V. Novel treatments in myasthenia gravis. Front Neurol. 2020;11:538. doi:10.3389/fneur.2020.00538
  • Gomez AM, Willcox N, Vrolix K, et al. Proteasome inhibition with bortezomib depletes plasma cells and specific autoantibody production in primary thymic cell cultures from early-onset myasthenia gravis patients. J Immunol. 2014;193(3):1055–1063. doi:10.4049/jimmunol.1301555
  • Howard JF Jr, Utsugisawa K, Benatar M, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a Phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017;16(12):976–986. doi:10.1016/S1474-4422(17)30369-1
  • Brogan K, Farrugia ME, Crofts K. Ptosis surgery in patients with myasthenia gravis: a useful adjunct to medical therapy. Semin Ophthalmol. 2018;33(3):429–434. doi:10.1080/08820538.2017.1284871
  • Park KA, Oh SY. Treatment for diplopia in patients with myasthenia gravis. Graefes Arch Clin Exp Ophthalmol. 2013;251(3):895–901. doi:10.1007/s00417-012-2227-x
  • Rautenbach RM, Pillay K, Murray ADN, Heckmann JM. Extraocular muscle findings in myasthenia gravis associated treatment-resistant ophthalmoplegia. J Neuroophthalmol. 2017;37(4):414–417. doi:10.1097/WNO.0000000000000534
  • Europa TA, Nel M, Heckmann JM. A review of the histopathological findings in myasthenia gravis: clues to the pathogenesis of treatment-resistance in extraocular muscles. Neuromuscul Disord. 2019;29(5):381–387. doi:10.1016/j.nmd.2019.03.009
  • Bentley CR, Dawson E, Lee JP. Active management in patients with ocular manifestations of myasthenia gravis. Eye. 2001;15(Pt 1):18–22. doi:10.1038/eye.2001.6
  • Wolfe GI, Kaminski HJ, Aban IB, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. 2016;375(6):511–522. doi:10.1056/NEJMoa1602489
  • Zhu K, Li J, Huang X, et al. Thymectomy is a beneficial therapy for patients with non-thymomatous ocular myasthenia gravis: a systematic review and meta-analysis. Neurol Sci. 2017;38(10):1753–1760. doi:10.1007/s10072-017-3058-7
  • Schumm F, Wietholter H, Fateh-Moghadam A, Dichgans J. Thymectomy in myasthenia with pure ocular symptoms. J Neurol Neurosurg Psychiatry. 1985;48(4):332–337. doi:10.1136/jnnp.48.4.332
  • Nakamura H, Taniguchi Y, Suzuki Y, et al. Delayed remission after thymectomy for myasthenia gravis of the purely ocular type. J Thorac Cardiovasc Surg. 1996;112(2):371–375. doi:10.1016/S0022-5223(96)70264-7
  • Liu Z, Feng H, Yeung SC, et al. Extended transsternal thymectomy for the treatment of ocular myasthenia gravis. Ann Thorac Surg. 2011;92(6):1993–1999. doi:10.1016/j.athoracsur.2011.08.001
  • Liu X, Zhou W, Hu J, et al. Prognostic predictors of remission in ocular myasthenia after thymectomy. J Thorac Dis. 2020;12(3):422–430. doi:10.21037/jtd.2020.01.17
  • Hamedani AG, Pistilli M, Singhal S, et al. Outcomes after transcervical thymectomy for ocular myasthenia gravis: a retrospective cohort study with inverse probability weighting. J Neuroophthalmol. 2020;40(1):8–14. doi:10.1097/WNO.0000000000000814
  • Wolfe GI, Kaminski HJ, Cutter GR. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. 2016;375(20):2006–2007. doi:10.1056/NEJMc1611704